Skip to yearly menu bar Skip to main content


Poster

Efficient Inference of Continuous Markov Random Fields with Polynomial Potentials

Shenlong Wang · Alex Schwing · Raquel Urtasun

Level 2, room 210D

Abstract:

In this paper, we prove that every multivariate polynomial with even degree can be decomposed into a sum of convex and concave polynomials. Motivated by this property, we exploit the concave-convex procedure to perform inference on continuous Markov random fields with polynomial potentials. In particular, we show that the concave-convex decomposition of polynomials can be expressed as a sum-of-squares optimization, which can be efficiently solved via semidefinite programming. We demonstrate the effectiveness of our approach in the context of 3D reconstruction, shape from shading and image denoising, and show that our approach significantly outperforms existing approaches in terms of efficiency as well as the quality of the retrieved solution.

Live content is unavailable. Log in and register to view live content