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Lazy Training Regime
Two-layers Neural Network (NN):
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Lazy Training regime: for some initialization 69 = (a2, w?)
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[Jacot, Gabriel, Hongler, 2018; Du, Zhai, Poczos, Singh, 2018; Chizat, Bach,
2018b; Arora, Du, Hu, Li, Wang, 2019; Allen-Zhu, Li, Song, 2018; Yehudali,
Shamir, 2019; ...]
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Questions:
» Do RF/NT provide a good approximation to effectively trained NN?
» Do RF/NT learn effective/smart representations of the data?

Setting:
> x;, ~N(0,1;),

¥i = fy(x;) = (x5, Bx;) + bo, with B > 0

2

» Here U(:B) =z (cf. paper for generalization)

» The neural network NN is trained by SGD

» Compare population squared error loss
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Results

> B¢ ]R450><450, )\i(B) ~iid exp(l)
» N varies in {30,...,4500}
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Figure: Lines are analytical predictions and dots are empirical results.
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» RF model does not capture quadratic functions (regardless of the
non-linearity)

» The NT model fits random directions spanned by (w?9,...,w%)

» Fully trained NN learns the most important eigendirections

» B arbitrarily large gap between NN and NT

Neural networks are superior to linearized model such as RF and NT, because
they can learn a good representation of the data J

These phenomena are more general: mixture of Gaussians, ReLu activation...
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Thank you!

For further discussions, you can visit our poster:

Poster # 230
East Exhibition Hall B + C
5:00 - 7:00pm, Wednesday 11th

If you have any questions: please email us at misiakie@stanford.edu

‘“Limitations of Lazy Training of Two-layers
Neural Networks”’

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, Andrea Montanari
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