
Fast Neural Kernel Embeddings
for General Activations

Joint work with Amir Zandieh, Jaehoon Lee,

Roman Novak, Lechao Xiao, Amin Karbasi

Insu Han

Yale University

Neural Kernels

§ Fully-connected neural network:

− : trainable parameters, : network width

f(x, θ) = h⊤

L
wL, hℓ =

1
√

m
σ(h⊤

ℓ−1
Wℓ), h0 = x

θ = (W1, . . . , wL)

…W1 W2

… …… wL

m

x f(x, θ)

Neural Kernels

§ Fully-connected neural network:

− : trainable parameters, : network width

§ Neural Tangent Kernel (NTK):

f(x, θ) = h⊤

L
wL, hℓ =

1
√

m
σ(h⊤

ℓ−1
Wℓ), h0 = x

θ = (W1, . . . , wL) m

lim
m→∞

E
θ∼N (0,I)

〈

∂f(x, θ)

∂θ
,
∂f(y, θ)

∂θ

〉

= NTKσ(x, y)

Neural Kernels

§ Fully-connected neural network:

− : trainable parameters, : network width

§ Neural Tangent Kernel (NTK) under infinite-width limit:

f(x, θ) = h⊤

L
wL, hℓ =

1
√

m
σ(h⊤

ℓ−1
Wℓ), h0 = x

θ = (W1, . . . , wL) m

lim
m→∞

E
θ∼N (0,I)

〈

∂f(x, θ)

∂θ
,
∂f(y, θ)

∂θ

〉

= NTKσ(x, y)

Neural Kernels

§ Fully-connected neural network:

− : trainable parameters, : network width

§ Neural Tangent Kernel (NTK) under infinite-width limit:

§ Neural Network Gaussian Process (NNGP) Kernel:

f(x, θ) = h⊤

L
wL, hℓ =

1
√

m
σ(h⊤

ℓ−1
Wℓ), h0 = x

θ = (W1, . . . , wL) m

lim
m→∞

E
θ∼N (0,I)

〈

∂f(x, θ)

∂θ
,
∂f(y, θ)

∂θ

〉

= NTKσ(x, y)

lim
m→∞

E
θ∼N (0,I)

〈f(x, θ), f(y, θ)〉 = NNGPσ(x, y)

Neural Kernels

§ Fully-connected neural network:

− : trainable parameters, : network width

§ Neural Tangent Kernel (NTK) under infinite-width limit:

§ Neural Network Gaussian Process (NNGP) Kernel:

§ Neural Kernels = {NTK, NNGP}

f(x, θ) = h⊤

L
wL, hℓ =

1
√

m
σ(h⊤

ℓ−1
Wℓ), h0 = x

θ = (W1, . . . , wL) m

lim
m→∞

E
θ∼N (0,I)

〈

∂f(x, θ)

∂θ
,
∂f(y, θ)

∂θ

〉

= NTKσ(x, y)

lim
m→∞

E
θ∼N (0,I)

〈f(x, θ), f(y, θ)〉 = NNGPσ(x, y)

Neural Kernels

§ Most infinitely wide neural kernels are based on the ReLU activation

f(x, θ) = h⊤

L
wL, hℓ =

1
√

m
σ(h⊤

ℓ−1
Wℓ), h0 = x

Neural Kernels

§ Most infinitely wide neural kernels are based on the ReLU activation

§ However, periodic activations are good for representing complex natural
signals such as images, wavefields, video, sound [SMB+20]

f(x, θ) = h⊤

L
wL, hℓ =

1
√

m
σ(h⊤

ℓ−1
Wℓ), h0 = x

Neural Kernels

§ Most infinitely wide neural kernels are based on the ReLU activation

§ However, periodic activations are good for representing complex natural
signals such as images, wavefields, video, sound [SMB+20]

§ Questions: can we compute neural kernels for general activations?

f(x, θ) = h⊤

L
wL, hℓ =

1
√

m
σ(h⊤

ℓ−1
Wℓ), h0 = x

Contributions

1. Explicit expression of neural kernels for general activations

− We show the NTK expression without knowing the activation

Contributions

1. Explicit expression of neural kernels for general activations

− We show the NTK expression without knowing the activation

2. Fast neural kernel approximations by sketching algorithm

− Our algorithm runs in linear in the number of inputs/dimension

− In practice, it runs up to ×106 faster than the exact computation

− For homogeneous activations, subspace embedding is guaranteed

K

low-rank
approximation

Building Block for Neural Kernels

§ Dual kernel. For every and a smooth

− Neural kernels ⇒ composition of dual kernel with

x, y ∈ R
d

Kσ(x, y) = E
w∼N (0,I)

[σ(〈w, x〉)σ(〈w, y〉)]

σ : R → R

σ,σ
′

Building Block for Neural Kernels

§ Dual kernel. For every and a smooth

− Neural kernels ⇒ composition of dual kernel with

§ We derive a closed-form expression of when is a polynomial

− Taylor series of can provide a power series of

− Error bound of the truncated series is analyzed

x, y ∈ R
d

Kσ(x, y) = E
w∼N (0,I)

[σ(〈w, x〉)σ(〈w, y〉)]

σ : R → R

σ,σ
′

Kσ
σ

σ Kσ

Building Block for Neural Kernels

§ Dual kernel. For every and a smooth

− Neural kernels ⇒ composition of dual kernel with

§ We derive a closed-form expression of when is a polynomial

− Taylor series of can provide a power series of

− Error bound of the truncated series is analyzed

§ Computing the kernel matrix takes a quadratic time in the number of inputs

− Huge memory space/infeasible computation time

x, y ∈ R
d

Kσ(x, y) = E
w∼N (0,I)

[σ(〈w, x〉)σ(〈w, y〉)]

σ : R → R

σ,σ
′

Kσ
σ

σ Kσ

Approximating Neural Kernels

§ Goal. A fast and efficient kernel approximation

{NTK,NNGP}σ(x, y) ≈ 〈φ(x),φ(y)〉

Approximating Neural Kernels

§ Goal. A fast and efficient kernel approximation

§ For homogeneous , i.e., for all
neural kernels = normalized dot-product kernels, e.g.,

is an analytic function

§ Feature map can be approximated by combining Taylor series on with
randomized sketching algorithm

{NTK,NNGP}σ(x, y) ≈ 〈φ(x),φ(y)〉

σ(at) = |a|σ(t) a, t ∈ R

NTKσ(x, y) = ‖x‖ ‖y‖κ

(

〈x, y〉

‖x‖ ‖y‖

)

σ

φ

κ : R → R

κ

Conclusion

§ We develop how to compute infinitely wide neural kernels

§ We propose how to approximate these kernels using sketching

