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Neural Kernels

= Fully-connected neural network:

1
f(z,0) = thL, he = \/—mg(hz—ﬂ%)a ho =z
-0 =(W,..., wr, ). trainable parameters, m: network width
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= Neural Network Gaussian Process (NNGP) Kernel:
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= Neural Kernels = {NTK, NNGP}
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= Most infinitely wide neural kernels are based on the Rel.U activation
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= However, periodic activations are good for representing complex natural
signals such as images, wavefields, video, sound [SMB+20]
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= Questions: can we compute neural kernels for general activations?



Contributions

1. Explicit expression of neural kernels for general activations
- We show the NTK expression without knowing the activation

pr— o(t) Reference Reference
for the NNGP for the NTK
Rectified monomials t7- 1i>0) [44] [44]
Error function erf(t) [43] [5]
ABReLU (Leaky ReLU) —Amin(¢,0) + B max(¢,0) [50, 51, 42] [50, 51, 42]
Exponential exp(At) [52, 46] [52, 46]
Hermite polynomials hq(t) [46] This work
Sinusoidal sin(At + B) [45, 47, 53] This work
Gaussian exp (—At?) [43] This work
GeLU : (1 + erf (\/Li)) [48] This work
ELU step(t)t + step(—t) (' — 1) [48] This work
Normalized Gaussian Unknown [54] This work
RBF V2sin(v2At + T) [45] This work
Gabor exp(—t?) sin(t) This work This work
Monomial 9 This work This work
Polynomial > i=0 a;t! This work This work




Contributions

1. Explicit expression of neural kernels for general activations
- We show the NTK expression without knowing the activation

2. Fast neural kernel approximations by sketching algorithm
- Our algorithm runs in linear in the number of inputs/dimension
- In practice, it runs up to x106 faster than the exact computation
- For homogeneous activations, subspace embedding is guaranteed

approximation
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- Neural kernels = composition of dual kernel with o, ¢’

= We derive a closed-form expression of K,when o is a polynomial
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- Error bound of the truncated series is analyzed

= Computing the kernel matrix takes a quadratic time in the number of inputs
- Huge memory space/infeasible computation time
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= Goal. A fast and efficient kernel approximation
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Approximating Neural Kernels

= Goal. A fast and efficient kernel approximation
{NTK,NNGP};(z,y) = (¢(z), ¢(y))

= For homogeneouso, i.e., o(at) = |a|o(t) foralla,t € R
neural kernels = normalized dot-product kernels, e.qg.,

NTK, (z,9) = | |yl ( \,4) )

[l

x : R — R is an analytic function

= Feature map ¢ can be approximated by combining Taylor series on xk with
randomized sketching algorithm



Conclusion

= We develop how to compute infinitely wide neural kernels
= We propose how to approximate these kernels using sketching
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