Fast Neural Kernel Embeddings for General Activations

Insu Han

Yale University

Joint work with Amir Zandieh, Jaehoon Lee, Roman Novak, Lechao Xiao, Amin Karbasi

Fully-connected neural network:

$$f(x,\theta) = h_L^{\top} w_L, \quad h_\ell = \frac{1}{\sqrt{m}} \sigma(h_{\ell-1}^{\top} W_\ell), \quad h_0 = x$$

 $-\theta = (W_1, \ldots, w_L)$: trainable parameters, m: network width

Fully-connected neural network:

$$f(x,\theta) = h_L^{\top} w_L, \quad h_\ell = \frac{1}{\sqrt{m}} \sigma(h_{\ell-1}^{\top} W_\ell), \quad h_0 = x$$

 $-\theta = (W_1, \ldots, w_L)$: trainable parameters, m: network width

Neural Tangent Kernel (NTK):

$$\mathbb{E}_{\theta \sim \mathcal{N}(0,I)} \left\langle \frac{\partial f(x,\theta)}{\partial \theta}, \frac{\partial f(y,\theta)}{\partial \theta} \right\rangle = \mathrm{NTK}_{\sigma}(x,y)$$

Fully-connected neural network:

$$f(x,\theta) = h_L^{\top} w_L, \quad h_\ell = \frac{1}{\sqrt{m}} \sigma(h_{\ell-1}^{\top} W_\ell), \quad h_0 = x$$

 $-\theta = (W_1, \ldots, w_L)$: trainable parameters, m: network width

• Neural Tangent Kernel (NTK) under infinite-width limit:

$$\lim_{m \to \infty} \mathbb{E}_{\theta \sim \mathcal{N}(0,I)} \left\langle \frac{\partial f(x,\theta)}{\partial \theta}, \frac{\partial f(y,\theta)}{\partial \theta} \right\rangle = \mathrm{NTK}_{\sigma}(x,y)$$

Fully-connected neural network:

$$f(x,\theta) = h_L^{\top} w_L, \quad h_\ell = \frac{1}{\sqrt{m}} \sigma(h_{\ell-1}^{\top} W_\ell), \quad h_0 = x$$

-

 $-\theta = (W_1, \ldots, w_L)$: trainable parameters, m: network width

Neural Tangent Kernel (NTK) under infinite-width limit:

$$\lim_{m \to \infty} \mathbb{E}_{\theta \sim \mathcal{N}(0,I)} \left\langle \frac{\partial f(x,\theta)}{\partial \theta}, \frac{\partial f(y,\theta)}{\partial \theta} \right\rangle = \mathrm{NTK}_{\sigma}(x,y)$$

Neural Network Gaussian Process (NNGP) Kernel:

$$\lim_{m \to \infty} \mathop{\mathbb{E}}_{\theta \sim \mathcal{N}(0,I)} \left\langle f(x,\theta), f(y,\theta) \right\rangle = \mathrm{NNGP}_{\sigma}(x,y)$$

Fully-connected neural network:

$$f(x,\theta) = h_L^{\top} w_L, \quad h_\ell = \frac{1}{\sqrt{m}} \sigma(h_{\ell-1}^{\top} W_\ell), \quad h_0 = x$$

 $-\theta = (W_1, \ldots, w_L)$: trainable parameters, m: network width

Neural Tangent Kernel (NTK) under infinite-width limit:

$$\lim_{m \to \infty} \mathbb{E}_{\theta \sim \mathcal{N}(0,I)} \left\langle \frac{\partial f(x,\theta)}{\partial \theta}, \frac{\partial f(y,\theta)}{\partial \theta} \right\rangle = \mathrm{NTK}_{\sigma}(x,y)$$

Neural Network Gaussian Process (NNGP) Kernel:

$$\lim_{m \to \infty} \mathop{\mathbb{E}}_{\theta \sim \mathcal{N}(0,I)} \left\langle f(x,\theta), f(y,\theta) \right\rangle = \mathrm{NNGP}_{\sigma}(x,y)$$

Neural Kernels = {NTK, NNGP}

Most infinitely wide neural kernels are based on the ReLU activation

$$f(x,\theta) = h_L^\top w_L, \quad h_\ell = \frac{1}{\sqrt{m}} \sigma(h_{\ell-1}^\top W_\ell), \quad h_0 = x$$

Most infinitely wide neural kernels are based on the ReLU activation

$$f(x,\theta) = h_L^\top w_L, \quad h_\ell = \frac{1}{\sqrt{m}} \sigma(h_{\ell-1}^\top W_\ell), \quad h_0 = x$$

 However, periodic activations are good for representing complex natural signals such as images, wavefields, video, sound [SMB+20]

Most infinitely wide neural kernels are based on the ReLU activation

$$f(x,\theta) = h_L^\top w_L, \quad h_\ell = \frac{1}{\sqrt{m}} \sigma(h_{\ell-1}^\top W_\ell), \quad h_0 = x$$

 However, periodic activations are good for representing complex natural signals such as images, wavefields, video, sound [SMB+20]

Questions: can we compute neural kernels for general activations?

Contributions

1. Explicit expression of neural kernels for general activations

- We show the NTK expression without knowing the activation

Activation	$\sigma(t)$	Reference for the NNGP	Reference for the NTK
Rectified monomials	$t^q \cdot \mathbb{1}_{\{t \geq 0\}}$	[44]	[44]
Error function	$\operatorname{erf}(t)$	[43]	[5]
ABReLU (Leaky ReLU)	$-A\min(t,0)+B\max(t,0)$	[50, 51, 42]	[50, 51, 42]
Exponential	$\exp(At)$	[52, 46]	[52, 46]
Hermite polynomials	$h_q(t)$	[46]	This work
Sinusoidal	$\sin(At+B)$	[45, 47, 53]	This work
Gaussian	$\exp\left(-At^2 ight)$	[43]	This work
GeLU	$\frac{t}{2}\left(1+\operatorname{erf}\left(\frac{t}{\sqrt{2}}\right)\right)$	[48]	This work
ELU	$\operatorname{step}(t)t + \operatorname{step}(-t)\left(e^t - 1 ight)$	[48]	This work
Normalized Gaussian	Unknown	[54]	This work
RBF	$\sqrt{2}\sin(\sqrt{2A}t+rac{\pi}{4})$	[45]	This work
Gabor	$\exp(-t^2)\sin(t)$	This work	This work
Monomial	t^q	This work	This work
Polynomial	$\sum_{j=0}^q a_j t^j$	This work	This work

Contributions

1. Explicit expression of neural kernels for general activations

- We show the NTK expression without knowing the activation

2. Fast neural kernel approximations by sketching algorithm

- Our algorithm runs in linear in the number of inputs/dimension
- In practice, it runs up to $\times 106$ faster than the exact computation
- For homogeneous activations, subspace embedding is guaranteed

Building Block for Neural Kernels

• **Dual kernel.** For every $x, y \in \mathbb{R}^d$ and a smooth $\sigma : \mathbb{R} \to \mathbb{R}$

$$K_{\sigma}(x,y) = \mathop{\mathbb{E}}_{w \sim \mathcal{N}(0,I)} \left[\sigma(\langle w, x \rangle) \sigma(\langle w, y \rangle) \right]$$

- Neural kernels \Rightarrow composition of dual kernel with σ, σ'

Building Block for Neural Kernels

• Dual kernel. For every $x, y \in \mathbb{R}^d$ and a smooth $\sigma : \mathbb{R} \to \mathbb{R}$

$$K_{\sigma}(x,y) = \mathop{\mathbb{E}}_{w \sim \mathcal{N}(0,I)} \left[\sigma(\langle w, x \rangle) \sigma(\langle w, y \rangle) \right]$$

- Neural kernels \Rightarrow composition of dual kernel with σ, σ'
- We derive a closed-form expression of K_{σ} when σ is a polynomial
 - Taylor series of σ can provide a power series of K_{σ}
 - Error bound of the truncated series is analyzed

Building Block for Neural Kernels

• Dual kernel. For every $x, y \in \mathbb{R}^d$ and a smooth $\sigma : \mathbb{R} \to \mathbb{R}$

$$K_{\sigma}(x,y) = \mathop{\mathbb{E}}_{w \sim \mathcal{N}(0,I)} \left[\sigma(\langle w, x \rangle) \sigma(\langle w, y \rangle) \right]$$

- Neural kernels \Rightarrow composition of dual kernel with σ, σ'
- We derive a closed-form expression of K_{σ} when σ is a polynomial
 - Taylor series of σ can provide a power series of K_{σ}
 - Error bound of the truncated series is analyzed
- Computing the kernel matrix takes a quadratic time in the number of inputs
 - Huge memory space/infeasible computation time

Approximating Neural Kernels

• Goal. A fast and efficient kernel approximation

 $\{\mathrm{NTK},\mathrm{NNGP}\}_{\sigma}(x,y)\approx \langle \phi(x),\phi(y)\rangle$

Approximating Neural Kernels

- Goal. A fast and efficient kernel approximation $\{NTK, NNGP\}_{\sigma}(x, y) \approx \langle \phi(x), \phi(y) \rangle$
- For homogeneous σ , i.e., $\sigma(at) = |a| \sigma(t)$ for all $a, t \in \mathbb{R}$ neural kernels = normalized dot-product kernels, e.g.,

$$\operatorname{NTK}_{\sigma}(x,y) = \|x\| \|y\| \kappa \left(\frac{\langle x,y \rangle}{\|x\| \|y\|}\right)$$

 $\kappa:\mathbb{R}\to\mathbb{R}$ is an analytic function

• Feature map ϕ can be approximated by combining Taylor series on κ with randomized sketching algorithm

Conclusion

- We develop how to compute infinitely wide neural kernels
- We propose how to approximate these kernels using sketching

Activation	$\sigma(t)$	Reference for the NNGP	Reference for the NTK
Rectified monomials	$t^q \cdot \mathbb{1}_{\{t \geq 0\}}$	[44]	[44]
Error function	$\operatorname{erf}(t)$	[43]	[5]
ABReLU (Leaky ReLU)	$-A\min(t,0)+B\max(t,0)$	[50, 51, 42]	[50, 51, 42]
Exponential	$\exp(At)$	[52, 46]	[52, 46]
Hermite polynomials	$h_q(t)$	[46]	This work
Sinusoidal	$\sin(At+B)$	[45, 47, 53]	This work
Gaussian	$\exp\left(-At^2 ight)$	[43]	This work
GeLU	$\frac{t}{2}\left(1+ ext{erf}\left(rac{t}{\sqrt{2}} ight) ight)$	[48]	This work
ELU	$\operatorname{step}(t)t + \operatorname{step}(-t)\left(e^t - 1\right)$	[48]	This work
Normalized Gaussian	Unknown	[54]	This work
RBF	$\sqrt{2}\sin(\sqrt{2A}t+\frac{\pi}{4})$	[45]	This work
Gabor	$\exp(-t^2)\sin(t)$	This work	This work
Monomial	t^q	This work	This work
Polynomial	$\sum_{j=0}^q a_j t^j$	This work	This work