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Neural Kernels

§ Fully-connected neural network:

− : trainable parameters,         : network width

§ Neural Tangent Kernel (NTK) under infinite-width limit:

§ Neural Network Gaussian Process (NNGP) Kernel:
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Neural Kernels

§ Most infinitely wide neural kernels are based on the ReLU activation
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Neural Kernels

§ Most infinitely wide neural kernels are based on the ReLU activation

§ However, periodic activations are good for representing complex natural 
signals such as images, wavefields, video, sound [SMB+20]
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Neural Kernels

§ Most infinitely wide neural kernels are based on the ReLU activation

§ However, periodic activations are good for representing complex natural 
signals such as images, wavefields, video, sound [SMB+20]

§ Questions: can we compute neural kernels for general activations?
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Contributions

1. Explicit expression of neural kernels for general activations

− We show the NTK expression without knowing the activation



Contributions

1. Explicit expression of neural kernels for general activations

− We show the NTK expression without knowing the activation

2. Fast neural kernel approximations by sketching algorithm

− Our algorithm runs in linear in the number of inputs/dimension

− In practice, it runs up to ×106 faster than the exact computation

− For homogeneous activations, subspace embedding is guaranteed
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§ Dual kernel. For every                  and a smooth

− Neural kernels ⇒ composition of dual kernel with 

§ We derive a closed-form expression of       when     is a polynomial

− Taylor series of     can provide a power series of 

− Error bound of the truncated series is analyzed

§ Computing the kernel matrix takes a quadratic time in the number of inputs

− Huge memory space/infeasible computation time
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Approximating Neural Kernels

§ Goal. A fast and efficient kernel approximation

{NTK,NNGP}σ(x, y) ≈ 〈φ(x),φ(y)〉



Approximating Neural Kernels

§ Goal. A fast and efficient kernel approximation

§ For homogeneous   , i.e.,                             for all  
neural kernels = normalized dot-product kernels, e.g.,

is an analytic function

§ Feature map     can be approximated by combining Taylor series on     with 
randomized sketching algorithm

{NTK,NNGP}σ(x, y) ≈ 〈φ(x),φ(y)〉

σ(at) = |a|σ(t) a, t ∈ R
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Conclusion

§ We develop how to compute infinitely wide neural kernels 

§ We propose how to approximate these kernels using sketching


