Toward Efficient Robust Training against Union of Lp Threat Models

Gaurang Sriramanan Maharshi Gor Soheil Feizi

Adversarial Vulnerability

Prediction: Hamster Confidence = 99.99%

50-step PGD targeted attack with $\varepsilon = \frac{8}{255}$ scaled by 50x

Prediction: Banjo Confidence = 100%

Lp Norm Threat Models

$$|\mathbf{x}|_p \equiv \left(\sum_i |x_i|^p\right)^{1/p}$$

L-infinity Adversarial Attack

Prediction: Hamster Confidence = 99.99%

50-step PGD targeted attack
with
$$\varepsilon = \frac{8}{255}$$
 scaled by 50x

Prediction: Banjo Confidence = 100%

L1 Adversarial Attacks

Prediction: Hamster Confidence = 99.99%

50-step PGD targeted attack with $\epsilon = 17$ scaled by 50x

Prediction: Banjo Confidence = 60.94%

Challenges in Robust Training

- L-inf robust models are vulnerable to L1 attacks and vice versa
- To achieve robustness against the union of threat models, prior works either use:
 - Large number of attack steps for different adversaries
 - Fine-tune existing robust models
- For L1 robustness, even certain multi-step adversarial training methods susceptible to catastrophic failure

Steepest Ascent in L1 Geometry

$\max_{\delta} \left[\sum_{i=1}^{d} g_i \delta_i \right] \text{ such that}$ (a) $0 \le x_i + \delta_i \le 1 \forall i$, and (b) $||\delta||_1 \le \epsilon_1$

Steepest Ascent in L1 Geometry

Steepest Ascent in L1 Geometry

Nuclear Norm Regularization

 $L = \ell_{CE}(f_{\theta}(X), Y) + \lambda \cdot ||f_{\theta}(\widetilde{X}) - f_{\theta}(X)||_{*}$

Curriculum Scheduling

- In practice, NuAT on its own is not stable enough for L1 training
- We propose to use a Curriculum Schedule to select the nature of perturbations during L1 training
- To achieve robustness against the union of threat models, we propose to use a Decision function to select adversary generation
- Maintains low compute requirement: single-step attack per minibatch

Catastrophic Overfitting in L1 Training

- R-FGSM (Val.)R-FGSM-C (Val.)
- NuAT (Val.)
- --- NCAT (Val.)

Stabilized L1 Training with NCAT

- R-FGSM-C (Val.)
- NuAT (Val.)
- NCAT (Val.)

ResNet-18 Results on CIFAR-10

Evaluations on Threat models with constraint sets: $\boldsymbol{\epsilon}_1 = 12$, $\boldsymbol{\epsilon}_2 = 0.5$ and $\boldsymbol{\epsilon}_{\infty} = 8/255$

Method	Number of AT Steps	CleanWorst-CaseAccAcc		Average Acc	ℓ_1 Acc	$\ell_2 \\ \mathbf{Acc}$	$\ell_{\infty} \ {f Acc}$		
ℓ_1 Training Alone									
APGD- ℓ_1	10	85.9	22.1	48.8	59.5	64.9	22.1		
NCAT- ℓ_1	1	81.1	37.9	53.6	55.9	67.0	38.0		
Training under Union of Threat Models									
SAT	13.33 [†]	83.9	40.4	54.2	54.0	68.0	40.7		
AVG	30	84.6	40.1	53.8	52.1	68.4	40.8		
MAX	30	80.4	44.0	53.4	48.6	66.0	45.7		
MSD	50	81.1	43.9	53.4	49.5	65.9	44.9		
EAT	10^{++}	82.2	42.4	54.6	53.6	67.5	42.7		
NCAT	1	80.3	42.6	53.3	46.9	67.0	46.0		
NCAT ⁺	1	77.5	43.7	53.4	48.4	65.7	46.1		

Stability on Large Networks - WideResNet

Evaluations on Threat models with constraint sets: $\boldsymbol{\epsilon}_1 = 12$, $\boldsymbol{\epsilon}_2 = 0.5$ and $\boldsymbol{\epsilon}_{\infty} = 8/255$

Method	Number of AT Steps	Clean Acc	Worst-Case Acc	Average Acc	ℓ_1 Acc	$\ell_2 \\ \mathbf{Acc}$	ℓ_{∞} Acc		
ℓ_1 Training Alone									
APGD- ℓ_1	10	83.7	30.7	52.5	61.6	65.1	30.7		
NCAT- ℓ_1	1	80.7	39.2	54.6	56.1	68.6	39.3		
Training under Union of Threat Models									
SAT	13.33 [†]	80.5	45.7	56.2	55.9	66.7	45.9		
AVG	30	82.5	45.1	56.1	55.0	68.0	45.4		
MAX	30	79.9	47.4	54.6	50.2	65.3	48.4		
MSD	50	80.6	46.9	55.1	51.7	65.6	48.0		
EAT	10^{++}	79.9	46.4	56.3	56.0	66.2	46.6		
NCAT	1	81.5	44.6	54.8	49.9	68.3	46.3		

Results on ImageNet-100

Evaluations on Threat models with constraint sets: $\boldsymbol{\varepsilon}_1 = 255$, $\boldsymbol{\varepsilon}_2 = 1200/255$ and $\boldsymbol{\varepsilon}_{\infty} = 4/255$

Method	Number of AT Steps	Arch	Clean Acc	Worst-Case Acc	ℓ_1 Acc	ℓ_2 Acc	$\left. egin{array}{c} \ell_{\infty} \ \mathbf{Acc} \end{array} ight $	PPGD Acc
ℓ_{∞} -AT	10	RN50	81.7	0.8	0.8	3.7	55.7	1.5
PAT	10	RN50	72.6	37.8	41.2	37.7	45.0	29.2
NCAT- ℓ_1	1	RN18	64.9	41.1	48.3	41.4	42.1	26.6
NCAT	1	RN18	63.9	41.5	46.8	41.9	45.7	29.1

- Successfully achieves robustness against L1 adversaries in an efficient manner
- Extends to robust training against union of threat models
- NCAT requires only a single step attack for multiple threat models
- Generalizes to unseen threat models, even to Perceptual Projected Gradient Descent (PPGD) attack

Thank you!

