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Branch-and-bound

• Powerful tree-search algorithm used to solve IPs in 
practice

• Uses the linear programming (LP) relaxation to do an 
informed search through the set of feasible integer 
solutions

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ𝑛

IP

Max 𝒄 ∙ 𝒙
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LP relaxation

2



Branch-and-bound: branching

• Choose variable i to branch on.
• Generate one subproblem with 𝒙 𝑖 ≤ 𝒙LP

∗ 𝑖 another with 𝒙 𝑖 ≥ ⌈𝒙LP
∗ 𝑖 ⌉

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ𝑛

⋮ ⋮

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙[𝑖] ≤ 2
𝒙 ∈ ℤ𝑛

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 𝑖 ≥ 3
𝒙 ∈ ℤ𝑛
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Branch-and-bound: pruning

• Prune subtrees if
– LP relaxation at a node is integral, infeasible, or
– (Bounding) LP optimal worse than best feasible integer solution found 

so far

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙[𝒊] ≤ 2
𝒙 ∈ ℤ𝑛

⋮
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Branch-and-cut

• Branch-and-bound, but at each node may add 
cutting planes

• Method of getting tighter LP relaxation 
bounds, and thus pruning subtrees sooner
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Cutting planes

• Constraint 𝜶𝒙 ≤ 𝛽 is a valid cutting plane if it does 
not cut off any integer feasible points

Valid cutting planes An invalid cutting plane
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Cutting planes

• If 𝜶𝒙 ≤ 𝛽 is valid and separates the LP optimum, can 
speed up B&C by pruning nodes sooner

𝒙LP
∗

𝒙LP
∗ after adding cut

Integer optimum 𝒙IP
∗
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Gomory Mixed Integer Cuts

• Gomory Cuts Revisited, 1996. Balas, Ceria, Cornuéjols, Natraj
– achieved remarkable speedups by effectively integrating these cuts 

into branch-and-bound (believed to be practically useless before)

• Today: Gomory mixed integer cuts a crucial component of 
commercial solvers like CPLEX and Gurobi

8G. Cornuéjols. Revival of the Gomory cuts in the 1990’s. Annals of OR. 2007. 



Main contributions

• The first generalization guarantees for using 
machine learning to add Gomory mixed 
integer cuts

• A novel structural analysis of the branch-and-
cut algorithm that pins down its possible 
behaviors
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Generalization guarantees for 
cutting planes

Distribution-dependent cut selection
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Learning to cut
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Max 𝒄𝟏 ∙ 𝒙
s.t. 𝐴1𝒙 ≤ 𝒃𝟏

𝒙 ∈ ℤ𝑛

Max 𝒄𝑁 ∙ 𝒙
s.t. 𝐴𝑵𝒙 ≤ 𝒃𝑵

𝒙 ∈ ℤ𝑛
⋯

IP 1 IP N

∼ 𝐷

If a cut yields small average branch-and-cut tree size over IP samples…

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ𝑛
∼ 𝐷

…is it likely to yield a small 
branch-and-cut tree on a fresh IP?



Tuning a GMI cut selection parameter

• E.g. mixture of 𝑑 = 2 scores
𝜇 ⋅ parallelism + 1 − 𝜇 ⋅ efficacy
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Two different distributions over facility location IPs.



Generalization for Gomory mixed integer cuts
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Theorem [Balcan, Prasad, Sandholm, Vitercik NeurIPS’22]: for all 
GMI cuts 𝒖 ∈ −𝑈,𝑈 𝑚, difference between average training 
performance over N samples and expected performance is (whp)

෨𝑂 𝐻
𝑚𝑛3 log 𝑚𝑛𝜏𝑈 𝐴 1,1 𝒃 1

𝑁

Proof uses our structural analysis of branch-and-cut



A structural analysis of branch-and-cut

• Given two valid cutting planes

𝜶𝟏𝒙 ≤ 𝛽1 and 𝜶𝟐𝒙 ≤ 𝛽2

• When does B&C behave identically on the following 
IPs?
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Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝜶𝟏𝒙 ≤ 𝛽1
𝒙 ∈ ℤ𝑛

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝜶𝟐𝒙 ≤ 𝛽2
𝒙 ∈ ℤ𝑛



Branch-and-cut piecewise invariance
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Theorem [BPSV NeurIPS’22] : Given IP (𝒄, 𝐴, 𝒃), there are 

𝑂 14𝑛 𝑚 + 2𝑛 3𝑛2𝜏5𝑛
2

polynomial hypersurfaces of degree 

≤ 5 that partition ℝ𝑛+1 into connected components such that 
the branch-and-cut tree built after adding the cut 𝜶𝒙 ≤ 𝛽 is 
invariant over all (𝜶, 𝛽) within a given component.

𝜏 ≔ max
𝒙∈𝑃

𝒙 ∞ ≤ 𝐴 ∞,∞
𝑛 𝑛𝑛/2

If A has a row with all positive entries, then 𝜏 ≤ 𝒃 ∞


