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e TFGW: A novel pooling layer derived from OT distances.
e Leading to new end-to-end GNN models for graph-level tasks.

e 4 main components where learnable parameters are illustrated in red.
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1. Modeling graphs as discrete distributions

e h;: probability vector modeling nodes relative importance.
e C;: node relationship matrix e.g adjacency, shortest-path, laplacian, etc.

o F}: node feature matrix.
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2. Node embeddings

e ¢, Spatial GNN of L layers parameterized by uw e.g GIN, GAT, etc.

e Promotes discriminant features on the nodes ¢ (F})
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3. Template-based Fused Gromov-Wasserstein pooling

e FGW,: OT distance resulting from a soft graph matching problem.
e « € [0;1]: relative importance between structure C; and node features ¢, (F3).

o {C},Fy,hy}: FGW distances to K templates used as graph representation.
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4. Final MLP for predictions

e 1,: MLP with non-linearities fed with the distance embeddings.

e y;: final prediction for graph-level tasks.



Numerical experiments

\ [ MUTAG | PTC | ENZYMES [ PROTEIN | NCI1 [| IMDB-B | IMDB-M [ COLLAB |

Best competitor OTGNN | OTGNN FGW OTGNN WWL WWL WWL WWL
accuracy (%) 92.1 68.0 72.2 78.0 85.7 71.6 52.6 81.4
TFGW+GIN (ours) 96.4 72.4 75.1 82.9 88.1 78.3 56.8 84.3
accuracy gain +4.3 +4.4 +2.9 +4.9 +2.4 +6.7 +4.2 +2.9

e Better Generalization: TFGW+GIN outperforms best competitor among
benchmarked SOTA GNN and Kernel models.

e Enhanced Expressivity beyond Weisfeiler-Lehman Isomorphism tests.
e Sensitivity analysis:

e TFGW > Other pooling (GIN & GAT).

e Flexible choice of input structure C;.
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