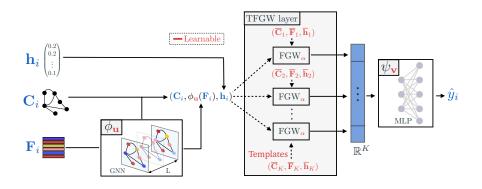
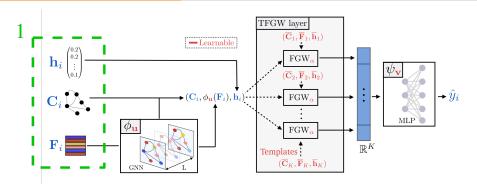


Cédric Vincent-Cuaz

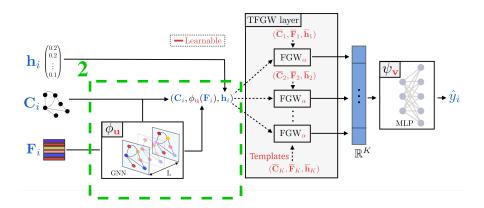
Joint work with Rémi Flamary, Marco Corneli, Titouan Vayer & Nicolas Courty.

R. Flamary

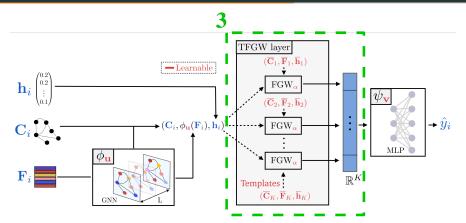

M. Corneli


T. Vaver

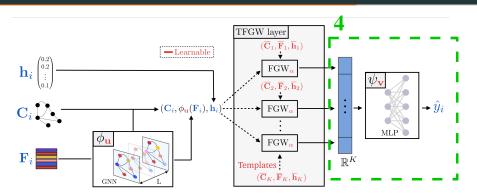
 $N.\ Courty$



- TFGW: A novel pooling layer derived from OT distances.
- Leading to new end-to-end GNN models for graph-level tasks.
- 4 main components where learnable parameters are illustrated in red.


1. Modeling graphs as discrete distributions

- h_i : probability vector modeling nodes relative importance.
- ullet C_i : node relationship matrix e.g adjacency, shortest-path, laplacian, etc.
- F_i : node feature matrix.


2. Node embeddings

- ullet $\phi_{oldsymbol{u}}$: Spatial GNN of L layers parameterized by $oldsymbol{u}$ e.g GIN, GAT, etc.
- ullet Promotes discriminant features on the nodes $\phi_{oldsymbol{u}}(oldsymbol{F}_i)$

3. Template-based Fused Gromov-Wasserstein pooling

- ullet FGW $_{lpha}$: OT distance resulting from a soft graph matching problem.
- $\alpha \in [0;1]$: relative importance between structure C_i and node features $\phi_{\boldsymbol{u}}(\boldsymbol{F}_i)$.
- ullet $\{\overline{C}_k,\overline{F}_k,\overline{h}_k\}$: FGW distances to K templates used as graph representation.

4. Final MLP for predictions

- ullet $\psi_{oldsymbol{v}}$: MLP with non-linearities fed with the distance embeddings.
- \hat{y}_i : final prediction for graph-level tasks.

Numerical experiments

	MUTAG	PTC	ENZYMES	PROTEIN	NC I1	IM DB-B	IMDB-M	COLLAB
Best competitor	OTGNN	OTGNN	FGW	OTGNN	WWL	WWL	WWL	WWL
accuracy (%)	92.1	68.0	72.2	78.0	85.7	71.6	52.6	81.4
TFGW+GIN (ours)	96.4	72.4	75.1	82.9	88.1	78.3	56.8	84.3
accuracy gain	+4.3	+4.4	+2.9	+4.9	+2.4	+6.7	+4.2	+2.9

- Better Generalization: TFGW+GIN outperforms best competitor among benchmarked SOTA GNN and Kernel models
- Enhanced Expressivity beyond Weisfeiler-Lehman Isomorphism tests.
- Sensitivity analysis:
 - TFGW > Other pooling (GIN & GAT).
 - ullet Flexible choice of input structure $oldsymbol{C}_i$.

Thank you for your attention.

Let's meet at the poster session!