Operator Splitting Value Iteration

Amin Rakhsha^{1,2}

Andrew Wang^{1,2}

Mohammad Ghavamzadeh³

Amir-massoud Farahmand^{2,1}

¹University of Toronto

²Vector Institute

³Google Research

Google Research

Problem Definition

Given:

- *P*: True dynamics, but expensive to query
- \hat{P} : Inaccurate dynamics, but no cost to query

How should we learn the value function V^{π} or V^{*} ?

Problem Definition

Existing Methods

- 1. Value Iteration using P (Model-free algorithms)
 - Accurate, but lots of queries to *P*, slow rate (Error $\approx \gamma^k$)
- 2. Value Iteration using \hat{P} (Dyna architecture)
 - No query cost to P, but biased value due to model error

Our Contribution

Operator Splitting Value Iteration (OS-VI)

• Fewer queries to P, rate \propto Model Error

Error
$$\approx \left(\frac{\gamma}{1-\gamma} \times \text{Model Error}\right)^k$$

This can be significantly faster than VI!

No bias due to model error

Operator Splitting Dyna (OS-Dyna)

Sample-based version of OS-VI

- $V_{k+1} \leftarrow \text{Solution of an auxiliary MDP}(\hat{P}, \bar{r}_k).$
- Auxiliary MDP at iteration *k*:

Results

Faster convergence to the true value function!