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Problem Overview

• Transformer-based models [1] are increasingly relevant to tasks such as 
question answering, paraphrasing, and even image processing [2, 3, 4].

• However, training Transformer-based models is also expensive [5, 6]!

• There is a strong incentive to reduce the training time of these models.
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Potential Angle: Look at the Memory Footprint!
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• Increasing the batch size can improve GPU compute utilization [7].

• Activation memory is the main contributor to the memory footprint 
compared to parameters, gradients, and optimizer states [8].

Figure showing the maximum batch size is 2 for BERT Large on a 2080Ti at S=512



Overview of Prior Works

• Checkpointing
• Checkmate [9]
• Sublinear Memory Cost [10]

• Offloading
• vDNN [11]
• Capuchin [12]

• Compression/Quantization
• ActNN [13]

• CNN Specific
• Gist [14]
• In-place ABN [15]
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Tempo Techniques
• Tempo applies Transformer-specific optimizations that 

are missed by general techniques

• In-place GELU (3)

• In-place LayerNorm (2)
• Alternative derivation for the backward pass

• Sub-Layer Dropout Recomputation (1)
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Retained activations for the LayerNorm backward pass on the 
Baseline and Tempo.

Diagram of a BERT [16] encoder layer with sizes of intermediates. The 
points at which our method is applied is annotated.



In-place GELU
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• 4 Key Ideas
• Invert GELU operator to 

avoid storing X

• Compose inverse with 
regular backward gradient 
calculation to "fuse kernels"

• Use polynomial 
approximation since there is 
no nice form for this 
composite function

• Store a mask bit since it is 
not bijective

Inverse +
Derivative

Generates boolean
for invertibility

Retained activations for the GELU backward pass on the Baseline 
and Tempo.

Graph of the GELU [17] function with minimum point indicated.



Sub-Layer Dropout Recomputation
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• Attention memory is quadratic in the sequence length

• Can quickly recompute Y through cheap operations

• Saves a large amount of memory with minimum overhead

Recomputation of Y inside the Dropout layer.



Results
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• 2x and 1.5x batch size increase vs. Baseline on BERT Large at a Sequence Length of 
512 on 2080Ti and V100 GPUs respectively.

• 16% and 5% improvement in throughput for these configurations.

• 39% improvement on BERT Base modified to use a Hidden Layer Size of 3072 at a 
Sequence Length of 512 on an A100

• 27% improvement on BERT Large modified to use a Sequence Length of 1024 and 12 
Layers on an A100

• Up to 19% and 26% improvement on 2080Ti for GPT2 [17] and RoBERTa [18] 
respectively.

Hardware Models
Sequence 
Lengths

Hidden Layer 
Sizes



Conclusion

• Transformer training requires more efficient training

• Activation memory footprint reduction can improve training 
performance

• Tempo is a method that takes advantage of Transformer-based model 
specifics, improving performance for a low-cost compared to existing 
works

• Results show improvement across a variety of different parameters.
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