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Distributed Online Optimization

B Online tasks: streaming data are revealed incrementally, and decisions must be made before all data are available.

e Spam filtering [Sculley and Wachman, SIGIR2007] ()

e Dictionary learning [Mairal et al, ICML2009] >

-SPAM-

e Advertising selection [Hazan et al, 2016]

M Distributed setting: data collection, storage, and processing are performed in a multi-agent network.

T N
: : t
B Goal: min ZZE (x) S
t=11i=1
T N T N
Metric: Regret(j,T) = z Z fi(xf) - argminz Z fif(x)
t=11i=1 Y ==t ENV
No-regret: Re%etm — 0,asT -0
—
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Compressed Communication

B Motivation: communication is a bottleneck!
* High-dimensional data, large-scale network, limited bandwidth.
e Data transmission is more time-consuming than calculation.

B Compressor: Q(-):R% — R% is a mapping/operator whose output can be usually encoded with fewer bits.

B w-contracted compressor: satisfying Eq[|Q(x) — x||? < (1 —w||x||?, Vx € R4.

Example description w Bits to encode Q(x)
cpe s k
Sparsification [Stich et al, NeulPS2018] Rand,, Topg 7 kb + log,d
. _x, p € [0,1]
Random gossip [Koloskova et al, ICML2019] Q(x) = {0' otherwise. p bdp
- . sgn(x) - |lx|| |[slx] 1
Random quantization [Alistarh et al, NeulPS2017] QSGD4(x) = = o Il +¢& — [log,(2s + 1)]d + b

(o)

B Open problem:

whether it is possible to design provably no-regret distributed online algorithms that work with compressors.
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Related Work

M Direct compression scheme: allows agents to compress their states and spread them directly.
* fail to converge [Carli et al, ECC2007], [Aysal et al, TSP2008]

M Extrapolation compression scheme: allows agents to compress the extrapolation between the last two local states.
e D-PSGD — ECD-PSGD [Tang et al, NeurlPS2018]
* AMSGrad — ECD-AMSGrad [Li et al, CL2021] (online, empirical results)

M Difference compression scheme: allows agents to add replicas of I ——

neighboring states and compress the state-difference

* D-PSGD — DCD-PSGD [Tang et al, NeurlPS2018] qlt

* SGD — CHOCO-SGD [Koloskova et al, ICML2019] 1

* Event-trigger —» SPARQ-SGD [Singh et al, TAC2022] - %l actsas a replica of x?

e Gradient-tracking = C-GT [Liao et al, arXiv2021] - Compress the difference qf = Q(x! — &%) and spread it
* NIDS — COLD [Zhang et al, arXiv 2021] «  Update f*! = &! + qf

* EF — EF21 [Richtarik et al, NeurlPS2021] v 291 actually tracks xt
i i

* Periodic averaging — FedPAQ [Reisizadeh et al, PMLR2020] \\/ difference — 0, compression error — 0 j
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Full Information Feedback

The loss function f; is revealed to node i at time t after the decision x; is made.

We propose the DC-DOGD, which is based on DAOL [Yan et al, TkDE2012] and memory-efficient CHOCO-SGD [Koloskova et al, ICML2019].

Algo.1 Distributed Online Gradient Descent with Difference Compression (DC-DOGD)

Input: consensus stepsize y, gradient descent stepsize {1, }}-,
Initialize: x! = 0,8} =0,s} =0,Vi

Fort = 1to T, doin parallel for each node i

Compress the difference gf = Q(xf — £}), and update the local replica £ ** = £f + q/.
Send gf and receive q]t-, and update the estimate of the consensus decision sf*! = sf + Z?’Zl a;j q]t-. Difference compression
Calculate the gradient gf = Vf£(x}).
Observe the full function 8 gi fi(x0)
Update its decision variable x{*! = Py (xf + y(sf™ — 1) — n.gb).
Projection: remain y-gossip: renovate x} towards Gradient descent: minimize
in the feasible set the consensus decision the local loss function
When there is no compression, DC-DOGD reduces to DAOL. .
St+1 t t+1 N t t+1 7~ N t t(t
Xi T oX,, ST 2]:1 aij Xj xi — Py (2j=1 ajj X; — NV f; (xl))
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Full Information Feedback

@ Assumptions )

B 1. The connectivity matrix A is symmetric doubly stochastic.
B 2. Qis w-contracted.

B 3. The convex set K is bounded with diameter D.

m 4 fit is convex and differentiable with bounded gradient. max||l7fl-t(x)|| <.

i,t,x

W 5. fl-t is u-strongly convex.
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Full Information Feedback

4 Theorem 1 (DC-DOGD) ™

_ 363w?(w+1) — 1 _ — _
Take ¥ = 865 136D P (@ D (1—w) + 402 (B2 ) (i (—w))aresie Where 8 =1 — | ()], f = Il — All,.
. . D 8
(i) (Convex case) Under Assumptions 1,2,3,4. Take n; = N for a constant ¢ > 370" then

E,[Regret(j, T)] < (— +8vV3 (\/— + y—\g + 1) (1 + y% + i)) NGDVT +¢c =0 ((w‘ZNl/Z + w—’*)Nx/T) .

(ii) (Strongly convex case) Under Assumptions 1,2,4,5. Take n, = for a constant ¢ > 31)/—66, then

1
u(t+c)

2
E,[Regret(j, T)] < 4V3 (\/— + i + 1) (1 yla %) le In(T+¢c)=0 ((w‘le/Z + w™*)NIn T).
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One-point Bandit Feedback

After making the decision xf at time t, agent i can only query the loss function value at one point around xf

We propose the DC-DOBD, which follows DC-DOGD.

Algo.2 Distributed Online One-point Bandit Gradient Descent with Difference Compression (DC-DOBD)

Input: y, {n;}I_,, exploration parameter ¢, shrinkage parameterg
Initialize: xi = 0,2} =0,s} =0,Vi
Fort = 1to T, doin parallel for each node i

Compress the difference gf = Q(xf — £}), and update the local replica £ ** = 2! + qf.

Send q; and receive q}, and update the estimate of the consensus decision s{** = sf + ¥3_; a;; ¢}

: : . d .
Choose a unit-norm vector uf € R? at random, and construct the gradient estimator gf = Zfl-t(xit + euf)uf. E.[gf] = V£ ()
Update its decision variable x{ ** = Py _gy5c(xf + (s — 2*1) — negf). [HERGTEIHEEEL, AP0

DC-DOBD actually performs the gradient descent on the function fit(x) = E,[x + eu] restricted to the convex set (1 — ¢)X..

2022/11/24 Distributed Online Convex Optimization with Compressed Communication



One-point Bandit Feedback

3. K is bounded with diameter D. 6. YBS K S RB,B ={u€R%: ||lul| <1}
—> max|f;* (x)| < B
4. f is differentiable with bounded gradient. 7. fi¥ is l-Lipschitz continuous.

4 Theorem 2 (DC-DOBD) )

Denote H = 44/3 (\/_ + 22 1) (1 + yi6 + %) y is chosen as in Theorem 1.

1 1
(1+4H)dBR\2 (T+c)2 €

forc = iand (

. . 2R
(i) (Convex case) Under Assumptions 1,2,6,7. Take n; = dB\/F s

1 5 3
E[Regret(j, T)] < ZNTZ(T + c)4\/2(1 + 4H) (l + >dBR O(dZNZTZ :

(HdZBZ In(T+c¢)\3

. - __1 16 — — £
(i) (Strongly convex case) + Assumption 5. Take n; = forc > ,and € 4B/ uT ) =7 then

u(t+c)’ 3y8
1 2

2B2\3 B\3 2 7 2 1

) <l+?> T3I3(T + ¢) = 0(@3NETIn3T).

E[Regret(j,T)] < 3N<
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Two-point Bandit Feedback

After making the decision xlt at time t, agent i can query the loss function value at two points around xf

We propose the DC-DO2BD as a variant of DC-DOBD.

Algo.3 Distributed Online Two-point Bandit Gradient Descent with Difference Compression (DC-DO2BD)

Input: y, {n;}I_,, exploration parameter ¢, shrinkage parameterg
Initialize: x; = 0,2} =0,s} =0,Vi
Fort = 1to T, doin parallel for each node i
St+1

Compress the difference qf = Q(xf — £}), and update the local replica £ ** = £ + ¢}.

Send q; and receive q}, and update the estimate of the consensus decision s{** = sf + ¥3_; a;; ¢}

, , . d
Choose a unit-norm vector u} € R? at random, and construct the gradient estimator gf = 2 (flt(xf + euit) — fit(xit — euf)) 7 )

Update its decision variable x{ ** = P _gy5c(xf +y(sf* — 2*1) — negf).

IEu[git] = Vfit(x)
[Agarwal et al, COLT2010]
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Two-point Bandit Feedback

Regret, (,T) = 221‘1 (% + Eut) fif(xf — eu )_iiﬁ_t(x*)
t=1i=1

d Theorem 3 (DC-DO2BD)

y and H are defined as before.

8
forc =2 — ande = —= g=§,then

. . 2R
(i) (Convex case) Under Assumptions 1,2,6,7. Take n; = TN 376" ﬁ,

2R
E[Regret,(j,T)] < (1 + 4H)RNAINT + ¢ + (3 + 7) NdINT = 0 ((w—zzvl/2 + w—‘*)zvd\/?).

i - __1 16 _InT _e
(i) (Strongly convex case) + Assumption 5. Take n; = i) forc > 35 and € = 6= then

1 2R
E[Regret,(j,T)] < ;Ndzle In(T + ¢) + (3 + T) NdlInT =0 ((w"le/Z + w™*)Nd?In T) .
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Numerical Experiments

M Task: diabetes prediction
M Dataset: diabetes-binary-BRFSS2015 (70692 instances, 21 features, 2 labels)

B Model: distributed online regularized logistic regression with the local loss function:

s
ff(x) = z log (1 + exp(—bit'j(af'j,x))) + % x|
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Figure 1: Comparison of algorithms DC-DOGD, DC-DOBD, DC-DO2BD, and ECD-AMSGrad with
QSGD,, w = 0.3, G(9, 18).

v' DC-DOGD, DC-DOBD, and DC-DO2BD are no-regret.
v' DC-DOGD and DC-DO2BD significantly outperform ECD-AMSGrad.
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Numerical Experiments
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Figure 2: The impacts of compression ratio and compressor type for DC-DOGD over G(9, 18) in the
strongly convex case.

v’ Effectively reduce the total transmitted bits for distributed online training.

v e.g. DC-DOGD with w = 0.05 have approximately 8 X reduction on transmitted bits to reach a certain

average regret compared with DAOL.
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Numerical Experiments
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Figure 3: The impacts of topology and node number.
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Conclusions

B We propose communication-efficient distributed online algorithms for the cases of full information feedback (DC-
DOGD), one-point bandit feedback (DC-DOBD), and two-point bandit feedback (DC-DO2BD), respectively.

B We make the technical advance to combine the difference compression scheme with the projection scheme.
Through proper design, the errors can be estimated and controlled by y and 7.

B We analyze the regret bounds of the proposed algorithms for convex and strongly convex losses. The obtained regret
bounds match those of uncompressed algorithms w.r.t T. Our algorithms are no-regret with theoretical guarantees.

B We give exhaustive experiments. The proposed algorithms can reduce the total transmitted bits for distributed

online training.

Table 1: Regret bounds in different settings

Settings convex losses strongly convex losses
Full information O ((w 2N"* + w4 NVT) O ((w2N"2 +w=) NIn(T))
One-point bandit O ((w 2N +w=*) " N&/2TV) O ((w 2N 4 w=4) " N&PT7 (1))
Two-point bandit O ((w™2N"? + w™*) NdVT) O ((w2N"2 + w=4) N2 In(T))
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