# Distributed Online Convex Optimization with Compressed Communication

Presentation for NeurIPS 2022

Zhipeng Tu<sup>1,2</sup>, Xi Wang<sup>1,2</sup>, Yiguang Hong<sup>\*3</sup>, Lei Wang<sup>4</sup>, Deming Yuan<sup>5</sup>, Guodong Shi<sup>2</sup>



<sup>&</sup>lt;sup>1</sup>AMSS, Chinese Academy of Sciences

<sup>&</sup>lt;sup>2</sup>The University of Sydney

<sup>&</sup>lt;sup>3</sup>Tongji University

<sup>&</sup>lt;sup>4</sup>Zhejiang University

<sup>&</sup>lt;sup>5</sup>Nanjing University of Science and Technology

# **Presentation Outline**

- Background
  - Distributed Optimization
  - Compressed Communication
  - Related Work
- Algorithms and Results
  - Full Information Feedback
  - One-point Bandit Feedback
  - Two-point Bandit Feedback
- Numerical Experiments
- Conclusions



# **Distributed Online Optimization**

- Online tasks: streaming data are revealed incrementally, and decisions must be made before all data are available.
  - Spam filtering [Sculley and Wachman, SIGIR2007]
  - Dictionary learning [Mairal et al, ICML2009]
  - Advertising selection [Hazan et al, 2016]



- Distributed setting: data collection, storage, and processing are performed in a multi-agent network.
- Goal:  $\min_{x \in \Omega} \sum_{t=1}^{T} \sum_{i=1}^{N} f_i^t(x)$ Metric:  $\operatorname{Regret}(j, T) = \sum_{t=1}^{T} \sum_{i=1}^{N} f_i^t(x_j^t) \operatorname{argmin}_{x} \sum_{t=1}^{T} \sum_{i=1}^{N} f_i^t(x)$

No-regret: 
$$\frac{\operatorname{Regret}(T)}{T} \to 0$$
, as  $T \to 0$ 



# **Compressed Communication**

- Motivation: communication is a bottleneck!
  - High-dimensional data, large-scale network, limited bandwidth.
  - Data transmission is more time-consuming than calculation.
- **Compressor**:  $Q(\cdot): \mathbb{R}^d \to \mathbb{R}^d$  is a mapping/operator whose output can be usually encoded with fewer bits.
- $\omega$ -contracted compressor: satisfying  $\mathbb{E}_Q \|Q(x) x\|^2 \le (1 \omega) \|x\|^2$ ,  $\forall x \in \mathbb{R}^d$ .

| Example                                          | description                                                                                      | ω                  | Bits to encode $Q(x)$              |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------|------------------------------------|
| Sparsification [Stich et al, NeuIPS2018]         | $Rand_k$ , $Top_k$                                                                               | $\frac{k}{d}$      | $kb + \log_2 d$                    |
| Random gossip [Koloskova et al, ICML2019]        | $Q(x) = \begin{cases} x, & p \in [0,1] \\ 0, & \text{otherwise.} \end{cases}$                    | p                  | bdp                                |
| Random quantization [Alistarh et al, NeuIPS2017] | $QSGD_{s}(x) = \frac{sgn(x) \cdot   x  }{s\sigma} \circ \left[ \frac{s x }{  x  } + \xi \right]$ | $\frac{1}{\sigma}$ | $\lceil \log_2(2s+1) \rceil d + b$ |

### Open problem:

whether it is possible to design provably no-regret distributed online algorithms that work with compressors.

# **Related Work**

- Direct compression scheme: allows agents to compress their states and spread them directly.
  - fail to converge [Carli et al, ECC2007], [Aysal et al, TSP2008]
- **Extrapolation compression scheme**: allows agents to compress the extrapolation between the last two local states.
  - D-PSGD → ECD-PSGD [Tang et al, NeurIPS2018]
  - AMSGrad → ECD-AMSGrad [Li et al, CL2021] (online, empirical results)
- Difference compression scheme: allows agents to add replicas of neighboring states and compress the state-difference
  - D-PSGD → DCD-PSGD [Tang et al, NeurIPS2018]
  - SGD → CHOCO-SGD [Koloskova et al, ICML2019]
  - Event-trigger → SPARQ-SGD [Singh et al, TAC2022]
  - Gradient-tracking → C-GT [Liao et al, arXiv2021]
  - NIDS → COLD [Zhang et al, arXiv 2021]
  - EF → EF21 [Richtarik et al, NeurlPS2021]
  - Periodic averaging → FedPAQ [Reisizadeh et al, PMLR2020]

### Difference-compressed communication



- $\hat{x}_i^t$  acts as a replica of  $x_i^t$
- Compress the difference  $q_i^t = Q(x_i^t \hat{x}_i^t)$  and spread it
- Update  $\hat{x}_i^{t+1} = \hat{x}_i^t + q_i^t$
- $\checkmark \hat{x}_i^{t+1}$  actually tracks  $x_i^t$
- ✓ difference  $\rightarrow$  0, compression error  $\rightarrow$  0

# **Full Information Feedback**

The loss function  $f_i^t$  is revealed to node i at time t after the decision  $x_i^t$  is made.

We propose the DC-DOGD, which is based on DAOL [Yan et al, TKDE2012] and memory-efficient CHOCO-SGD [Koloskova et al, ICML2019].

### Algo.1 Distributed Online Gradient Descent with Difference Compression (DC-DOGD)

**Input**: consensus stepsize  $\gamma$ , gradient descent stepsize  $\{\eta_t\}_{t=1}^T$ 

Initialize:  $x_i^1 = 0, \hat{x}_i^1 = 0, s_i^1 = 0, \forall i$ 

For t = 1 to T, do in parallel for each node i

Compress the difference  $q_i^t = Q(x_i^t - \hat{x}_i^t)$ , and update the local replica  $\hat{x}_i^{t+1} = \hat{x}_i^t + q_i^t$ .

Send  $q_i^t$  and receive  $q_j^t$ , and update the estimate of the consensus decision  $s_i^{t+1} = s_i^t + \sum_{j=1}^N a_{ij} \, q_j^t$ .

Difference compression

Observe the full function

Calculate the gradient  $g_i^t = \nabla f_i^t(x_i^t)$ .

Update its decision variable  $x_i^{t+1} = \frac{P_{\mathcal{K}}}{r} \left( x_i^t + \gamma \left( s_i^{t+1} - \hat{x}_i^{t+1} \right) - \frac{\eta_t g_i^t}{r} \right)$ .

Projection: remain in the feasible set

 $\gamma$ -gossip: renovate  $x_i^t$  towards the consensus decision

Gradient descent: minimize the local loss function

When there is no compression, DC-DOGD reduces to DAOL.

$$\hat{x}_i^{t+1} \to x_i^t, \quad s_i^{t+1} \to \sum_{j=1}^N a_{ij} x_j^t, \quad x_i^{t+1} \xrightarrow{\gamma=1} P_{\mathcal{K}} \left( \sum_{j=1}^N a_{ij} x_j^t - \eta_t \nabla f_i^t(x_i^t) \right)$$

# **Full Information Feedback**

## Assumptions

- $\blacksquare$  1. The connectivity matrix A is symmetric doubly stochastic.
- **2**. Q is  $\omega$ -contracted.
- $\blacksquare$  3. The convex set  $\mathcal{K}$  is bounded with diameter D.
- 4.  $f_i^t$  is convex and differentiable with bounded gradient.  $\max_{i,t,x} ||\nabla f_i^t(x)|| \le G$ .
- 5.  $f_i^t$  is  $\mu$ -strongly convex.

# **Full Information Feedback**

### Theorem 1 (DC-DOGD)

Take 
$$\gamma = \frac{3\delta^3 \omega^2(\omega+1)}{48(\delta^2+18\delta\beta^3+36\beta^2)\beta^2(\omega+2)(1-\omega)+4\delta^2(\beta^2+\beta)((\omega+2)(1-\omega))\omega+6\delta^3\omega}$$
, where  $\delta \coloneqq 1 - |\lambda_2(A)|, \beta \coloneqq ||I-A||_2$ .

(i) (Convex case) Under Assumptions 1,2,3,4. Take  $\eta_t = \frac{D}{G\sqrt{t+c}}$ , for a constant  $c \ge \frac{8}{3\gamma\delta}$ , then

$$\mathbb{E}_{Q}[\operatorname{Regret}(j,T)] \leq \left(\frac{1}{2} + 8\sqrt{3}\left(\sqrt{N} + \frac{2\sqrt{3}}{\gamma\delta} + 1\right)\left(1 + \frac{1}{\gamma\delta} + \frac{1}{\omega}\right)\right)NGD\sqrt{T + c} = \mathcal{O}\left(\left(\omega^{-2}N^{1/2} + \omega^{-4}\right)N\sqrt{T}\right).$$

(ii) (Strongly convex case) Under Assumptions 1,2,4,5. Take  $\eta_t = \frac{1}{\mu(t+c)}$ , for a constant  $c \ge \frac{16}{3\gamma\delta}$ , then

$$\mathbb{E}_{Q}[\operatorname{Regret}(j,T)] \leq 4\sqrt{3} \left(\sqrt{N} + \frac{2\sqrt{3}}{\gamma\delta} + 1\right) \left(1 + \frac{1}{\gamma\delta} + \frac{1}{\omega}\right) \frac{NG^{2}}{\mu} \ln(T+c) = \mathcal{O}\left(\left(\omega^{-2}N^{1/2} + \omega^{-4}\right)N \ln T\right).$$

# One-point Bandit Feedback

After making the decision  $x_i^t$  at time t, agent i can only query the loss function value at one point around  $x_i^t$ . We propose the DC-DOBD, which follows DC-DOGD.

### Algo.2 Distributed Online One-point Bandit Gradient Descent with Difference Compression (DC-DOBD)

**Input**:  $\gamma$ ,  $\{\eta_t\}_{t=1}^T$ , exploration parameter  $\epsilon$ , shrinkage parameter  $\zeta$ 

Initialize: 
$$x_i^1 = 0, \hat{x}_i^1 = 0, s_i^1 = 0, \forall i$$

For t = 1 to T, do in parallel for each node i

Compress the difference  $q_i^t = Q(x_i^t - \hat{x}_i^t)$ , and update the local replica  $\hat{x}_i^{t+1} = \hat{x}_i^t + q_i^t$ .

Send  $q_i^t$  and receive  $q_j^t$ , and update the estimate of the consensus decision  $s_i^{t+1} = s_i^t + \sum_{j=1}^N a_{ij} \, q_j^t$ .

Choose a unit-norm vector  $u_i^t \in \mathbb{R}^d$  at random, and construct the gradient estimator  $g_i^t = \frac{d}{\epsilon} f_i^t (x_i^t + \epsilon u_i^t) u_i^t$ .

Update its decision variable 
$$x_i^{t+1} = P_{(1-\varsigma)\mathcal{K}}(x_i^t + \gamma(s_i^{t+1} - \hat{x}_i^{t+1}) - \eta_t g_i^t).$$

$$\mathbb{E}_u[g_i^t] = \nabla \hat{f}_i^t(x)$$
[Flaxman et al, SIAM2005]

DC-DOBD actually performs the gradient descent on the function  $\hat{f}_i^t(x) = \mathbb{E}_u[x + \epsilon u]$  restricted to the convex set  $(1 - \varsigma)\mathcal{K}$ .

# One-point Bandit Feedback

### Assumptions

- 3.  $\mathcal{K}$  is bounded with diameter D.
- 4.  $f_i^t$  is differentiable with bounded gradient.

### **Assumptions**

6.  $r\mathcal{B} \subseteq \mathcal{K} \subseteq R\mathcal{B}, \mathcal{B} = \{u \in \mathbb{R}^d : ||u|| \le 1\}.$ 7.  $f_i^t$  is l-Lipschitz continuous.  $\max_{i,t,x} |f_i^t(x)| \le B$ 

### Theorem 2 (DC-DOBD)

Denote  $H = 4\sqrt{3}\left(\sqrt{N} + \frac{2\sqrt{3}}{\gamma\delta} + 1\right)\left(1 + \frac{1}{\gamma\delta} + \frac{1}{\omega}\right)$ .  $\gamma$  is chosen as in Theorem 1.

(i) (Convex case) Under Assumptions 1,2,6,7. Take  $\eta_t = \frac{2R\epsilon}{dB\sqrt{t+c'}}$ , for  $c \ge \frac{8}{3\gamma\delta'}$ , and  $\epsilon = \left(\frac{(1+4H)dBR}{2(l+B/r)}\right)^{\frac{1}{2}}\frac{(T+c)^{\frac{1}{2}}}{T^{\frac{1}{2}}}$ ,  $\zeta = \frac{\epsilon}{r'}$ , then

$$\mathbb{E}[\text{Regret}(j,T)] \le 2NT^{\frac{1}{2}}(T+c)^{\frac{1}{4}} \sqrt{2(1+4H)\left(l+\frac{B}{r}\right)dBR} = \mathcal{O}\left(d^{\frac{1}{2}}N^{\frac{5}{4}}T^{\frac{3}{4}}\right).$$

(ii) (Strongly convex case) + Assumption 5. Take  $\eta_t = \frac{1}{\mu(t+c)}$ , for  $c \ge \frac{16}{3\gamma\delta}$ , and  $\epsilon = \left(\frac{Hd^2B^2\ln(T+c)}{(l+B/r)\mu T}\right)^{\frac{1}{3}}$ ,  $\zeta = \frac{\epsilon}{r}$ , then

$$\mathbb{E}[\text{Regret}(j,T)] \le 3N \left(\frac{Hd^2B^2}{\mu}\right)^{\frac{1}{3}} \left(l + \frac{B}{r}\right)^{\frac{2}{3}} T^{\frac{2}{3}} \ln^{\frac{1}{3}} (T+c) = \mathcal{O}\left(d^{\frac{2}{3}} N^{\frac{7}{6}} T^{\frac{2}{3}} \ln^{\frac{1}{3}} T\right).$$

# Two-point Bandit Feedback

After making the decision  $x_i^t$  at time t, agent i can query the loss function value at two points around  $x_i^t$ . We propose the DC-DO2BD as a variant of DC-DOBD.

### Algo.3 Distributed Online Two-point Bandit Gradient Descent with Difference Compression (DC-DO2BD)

**Input**:  $\gamma$ ,  $\{\eta_t\}_{t=1}^T$ , exploration parameter  $\epsilon$ , shrinkage parameter  $\zeta$ 

Initialize:  $x_i^1 = 0, \hat{x}_i^1 = 0, s_i^1 = 0, \forall i$ 

For t = 1 to T, do in parallel for each node i

Compress the difference  $q_i^t = Q(x_i^t - \hat{x}_i^t)$ , and update the local replica  $\hat{x}_i^{t+1} = \hat{x}_i^t + q_i^t$ .

Send  $q_i^t$  and receive  $q_j^t$ , and update the estimate of the consensus decision  $s_i^{t+1} = s_i^t + \sum_{j=1}^N a_{ij} \, q_j^t$ .

Choose a unit-norm vector  $u_i^t \in \mathbb{R}^d$  at random, and construct the gradient estimator  $g_i^t = \frac{d}{2\epsilon} \Big( f_i^t \big( x_i^t + \epsilon u_i^t \big) - f_i^t \big( x_i^t - \epsilon u_i^t \big) \Big) u_i^t$ .

Update its decision variable  $x_i^{t+1} = P_{(1-\varsigma)\mathcal{K}}(x_i^t + \gamma(s_i^{t+1} - \hat{x}_i^{t+1}) - \eta_t g_i^t)$ .

$$\mathbb{E}_u[g_i^t] = \nabla \hat{f}_i^t(x)$$

[Agarwal et al, COLT2010]

# Two-point Bandit Feedback

Regret<sub>2</sub>(j,T) = 
$$\sum_{t=1}^{T} \sum_{i=1}^{N} \frac{f_i^t(x_j^t + \epsilon u_j^t) - f_i^t(x_j^t - \epsilon u_j^t)}{2} - \sum_{t=1}^{T} \sum_{i=1}^{N} f_i^t(x^*)$$

### Theorem 3 (DC-DO2BD)

 $\gamma$  and H are defined as before.

(i) (Convex case) Under Assumptions 1,2,6,7. Take  $\eta_t = \frac{2R}{dl\sqrt{t+c}}$ , for  $c \ge \frac{8}{3\gamma\delta}$ , and  $\epsilon = \frac{1}{\sqrt{T}}$ ,  $\zeta = \frac{\epsilon}{r}$ , then

$$\mathbb{E}[\operatorname{Regret}_2(j,T)] \leq (1+4H)RNdl\sqrt{T+c} + \left(3 + \frac{2R}{r}\right)Ndl\sqrt{T} = \mathcal{O}\left(\left(\omega^{-2}N^{1/2} + \omega^{-4}\right)Nd\sqrt{T}\right).$$

(ii) (Strongly convex case) + Assumption 5. Take  $\eta_t = \frac{1}{\mu(t+c)}$ , for  $c \ge \frac{16}{3\gamma\delta}$ , and  $\epsilon = \frac{\ln T}{T}$ ,  $\zeta = \frac{\epsilon}{r}$ , then

$$\mathbb{E}[\operatorname{Regret}_2(j,T)] \leq \frac{1}{\mu} N d^2 l^2 H \ln(T+c) + \left(3 + \frac{2R}{r}\right) N d l \ln T = \mathcal{O}\left(\left(\omega^{-2} N^{1/2} + \omega^{-4}\right) N d^2 \ln T\right).$$

# **Numerical Experiments**

- Task: diabetes prediction
- Dataset: diabetes-binary-BRFSS2015 (70692 instances, 21 features, 2 labels)
- Model: distributed online regularized logistic regression with the local loss function:



Figure 1: Comparison of algorithms DC-DOGD, DC-DOBD, DC-DO2BD, and ECD-AMSGrad with  $QSGD_2$ ,  $\omega = 0.3$ ,  $\mathcal{G}(9, 18)$ .

- ✓ DC-DOGD, DC-DOBD, and DC-DO2BD are no-regret.
- ✓ DC-DOGD and DC-DO2BD significantly outperform ECD-AMSGrad.

# **Numerical Experiments**



Figure 2: The impacts of compression ratio and compressor type for DC-DOGD over  $\mathcal{G}(9,18)$  in the strongly convex case.

- ✓ Effectively reduce the total transmitted bits for distributed online training.
- $\checkmark$  e.g. DC-DOGD with  $\omega$  = 0.05 have approximately 8 $\times$  reduction on transmitted bits to reach a certain average regret compared with DAOL.

# **Numerical Experiments**



Figure 3: The impacts of topology and node number.

# Conclusions

- We propose communication-efficient distributed online algorithms for the cases of full information feedback (DC-DOGD), one-point bandit feedback (DC-DOBD), and two-point bandit feedback (DC-DO2BD), respectively.
- We make the technical advance to combine the difference compression scheme with the projection scheme. Through proper design, the errors can be estimated and controlled by  $\gamma$  and  $\eta_t$ .
- We analyze the regret bounds of the proposed algorithms for convex and strongly convex losses. The obtained regret bounds match those of uncompressed algorithms w.r.t *T*. Our algorithms are no-regret with theoretical guarantees.
- We give exhaustive experiments. The proposed algorithms can reduce the total transmitted bits for distributed online training.

Table 1: Regret bounds in different settings

| Settings         | convex losses                                                                                | strongly convex losses                                                                                 |  |
|------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| Full information | $\mathcal{O}\left(\left(\omega^{-2}N^{1/2}+\omega^{-4}\right)N\sqrt{T}\right)$               | $\mathcal{O}\left(\left(\omega^{-2}N^{1/2} + \omega^{-4}\right)N\ln(T)\right)$                         |  |
| One-point bandit | $\mathcal{O}\left(\left(\omega^{-2}N^{1/2} + \omega^{-4}\right)^{1/2}Nd^{1/2}T^{3/4}\right)$ | $\mathcal{O}\left(\left(\omega^{-2}N^{1/2}+\omega^{-4}\right)^{1/3}Nd^{2/3}T^{2/3}\ln^{1/3}(T)\right)$ |  |
| Two-point bandit | $\mathcal{O}\left(\left(\omega^{-2}N^{1/2}+\omega^{-4}\right)Nd\sqrt{T}\right)$              | $\mathcal{O}\left(\left(\omega^{-2}N^{1/2} + \omega^{-4}\right)Nd^2\ln(T)\right)$                      |  |

# References

[Sculley and Wachman, SIGIR2007] David Sculley and Gabriel M Wachman. Relaxed online syms for spam filtering. In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 415–422, 2007.

[Mairal et al, ICML2009] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning for sparse coding. In Proceedings of the 26th Annual International Conference on Machine Learning, pages 689–696, 2009.

[Hazan et al, 2016] Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Optimization, 2(3-4):157–325, 2016.

[Carli et al, ECC2007] Ruggero Carli, Fabio Fagnani, Paolo Frasca, Tom Taylor, and Sandro Zampieri. Average consensus on networks with transmission noise or quantization. In 2007 European Control Conference, pages 1852–1857. IEEE, 2007.

[Aysal et al, TSP2008] Tuncer Can Aysal, Mark J Coates, and Michael G Rabbat. Distributed average consensus with dithered quantization. IEEE Transactions on Signal Processing, 56(10):4905–4918, 2008.

[Tang et al, NeurIPS2018] Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu. Communication compression for decentralized training. Advances in Neural Information Processing Systems, 31, 2018.

[Li et al, CL2021] Guangxia Li, Jia Liu, Xiao Lu, Peilin Zhao, Yulong Shen, and Dusit Niyato. Decentralized online learning with compressed communication for near-sensor data analytics. IEEE Communications Letters, 25(9):2958–2962, 2021.

[Koloskova et al, ICML2019] Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimization and gossip algorithms with compressed communication. In International Conference on Machine Learning, pages 3478–3487. PMLR, 2019.

[Alistarh et al, NeuIPS2017] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communicationefficient sgd via gradient quantization and encoding. Advances in Neural Information Processing Systems, 30, 2017.

# References

[Stich et al, NeulPS2018] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. Advances in Neural Information Processing Systems, 31, 2018.

[Singh et al, TAC2022] Navjot Singh, Deepesh Data, Jemin George, and Suhas Diggavi. Sparq-sgd: Event-triggered and compressed communication in decentralized optimization. IEEE Transactions on Automatic Control, 2022.

[Liao et al, arXiv2021] Yiwei Liao, Zhuorui Li, Kun Huang, and Shi Pu. Compressed gradient tracking methods for decentralized optimization with linear convergence. arXiv preprint arXiv:2103.13748, 2021.

[Zhang et al, arXiv 2021] Jiaqi Zhang, Keyou You, and Lihua Xie. Innovation compression for communication-efficient distributed optimization with linear convergence. arXiv preprint arXiv:2105.06697, 2021.

[Richtarik et al, NeurIPS2021] Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better, and practically faster error feedback. Advances in Neural Information Processing Systems, 34, 2021.

[Reisizadeh et al, PMLR2020] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani. Fedpaq:A communication-efficient federated learning method with periodic averaging and quantization. In International Conference on Artificial Intelligence and Statistics, pages 2021–2031. PMLR, 2020.

[Yan et al, TKDE2012] Feng Yan, Shreyas Sundaram, SVN Vishwanathan, and Yuan Qi. Distributed autonomous online learning: Regrets and intrinsic privacy-preserving properties. IEEE Transactions on Knowledge and Data Engineering, 25(11):2483–2493, 2012.

[Flaxman et al, SIAM2005] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization in the bandit setting: gradient descent without a gradient. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 385–394, 2005.

[Agarwal et al, COLT2010] Alekh Agarwal, Ofer Dekel, and Lin Xiao. Optimal algorithms for online convex optimization with multi-point bandit feedback. In Proceedings of the 23rd Annual Conference on Learning Theory, pages 28–40. Citeseer, 2010.

# **Thank You!**

