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k-Means Clustering

Problem Definition
Let A be a set of n points in d

dimensional Euclidean space and let k be

a positive integer. The objective consists

of finding a set of k centers S minimizing

cost(A,S) :=
∑
p∈A

min
c∈S

∥p − c∥2.
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Coreset Definition

Given a set of points A, a weighted subset Ω ⊂ A is a (k , ε)-coreset if for all sets

S of k centers it holds

|costw (Ω,S)− cost(A,S)| ≤ ε · cost(A,S)
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Theoretical Results on Coresets for Euclidean k-Means

Upper Bounds

Har-Peled, Mazumdar (STOC’04) O(kϵ−d+2 log n)

Chen (Sicomp’09) O(dk2ϵ−2 log n)

Langberg, Schulman (SODA’10) O(d2k3ϵ−2)

Feldman, Langberg (STOC’11) O(dkϵ−4)

Feldman, Schmidt, Sohler (Sicomp’20) O(k3ϵ−4)

Becchetti, Bury, Cohen-Addad, Grandoni, S. (STOC’19) O(kϵ−8)

Huang, Vishnoi (STOC’20) O(kϵ−6)

Braverman, Jiang, Krauthgamer, Wu (SODA’21) O(k2ϵ−4)

Cohen-Addad, Saulpic, S. (STOC’21) O(kϵ−4)

Cohen-Addad, Larsen, Saulpic, S. (STOC’22) O(k2ϵ−2)

Cohen-Addad, Larsen, Saulpic, S., Sheikh-Omar (NeurIPS’22) O(k1.5ϵ−2)

Lower Bounds

Cohen-Addad, Larsen, Saulpic, S. (STOC’22) Ω(kϵ−2)
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Coreset Algorithms

Algorithm
1 Sample S points (typically non

unformly)

2 Weigh each point inversely

proportionate to the sampling

probability
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Analysis Outline

First, we show that the cost of any arbitrary solution is approximated.

Second, we show that the cost for all solutions is approximated.

In previous analyses, we have the option of obtaining the following.

We obtain:

First Step Second Step Overall

Θ(ε−2 min(k, ε−2)) Θ(k) O(kε−2 min(k, ε−2))

Θ(ε−2) O(k ·
√
k) O(k1.5ε−2)
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