Unsupervised Object Representation Learning using Translation and Rotation Group Equivariant VAE

Alireza Nasiri

Tristan Bepler

NEW YORK STRUCTURAL BIOLOGY CENTER

In natural images, objects often have unknown orientations

- The pose of an object does not change its nature
- How can we identify different objects independent of their location and pose in an unsupervised manner?

Electron-Microscopy Micrograph

Multi-digit hand-written numbers

Aerial image Source: wired.com

Our Proposed Method

- Goal:
 - Given images of arbitrary objects with unknown pose, learn semantic representations of those objects separately from their rotations and translations with no supervision
 - Perform efficient inference on these variables using a neural network
 - Enable controlled generation of object images from the semantic representations
- Our Proposed method, Translation and Rotation Group Equivariant Variational Auto-Encoder (TARGET-VAE), has three main components:
 - 1. Translation and rotation group equivariant encoder
 - 2. Structurally disentangled distributions over rotation, translation, and semantic representation
 - 3. Spatially equivariant generator

2. Structurally disentangled distribution over latent rotation, translation, and a rotation-translation-invariant semantic object representation

3. Spatially equivariant generator network

3. Spatially equivariant generator network

3. Spatially equivariant generator network

TARGET-VAE: Translation and Rotation Group Equivariant VAE

Results – TARGET-VAE Accurately Predicts Rotation without Supervision

Rotated and Translated Digits:

Circular Correlation coefficient = 0.86

Results – TARGET-VAE Accurately Predicts Translation without Supervision

Results – TARGET-VAE Learns Rotation and Translation Invariant Semantic Representation

Table 2: Clustering accuracy (%) on MNIST(N) and MNIST(U)

Clustering Accuracy: 71.6 %

Model	MNIST(N)	MNIST(U)
VAE (z_dim=4) [3]	15.3	12.8
Beta-VAE (z_dim=4) [4]	15.1	18.0
Spatial-VAE (z_dim=2) [6]	37.1	28.2
TARGET-VAE P ₄ (z_dim=2)	56.4	56.6
TARGET-VAE P ₈ (z_dim=2)	60.1	57.1
TARGET-VAE P ₁₆ (z_dim=2)	60.1	63.4
TARGET-VAE P ₄ (z_dim=32)	65.1	64.3
TARGET-VAE P ₈ (z_dim=32)	77.7	69.1
TARGET-VAE P ₁₆ (z_dim=32)	75.2	71.2

Results – Identifying Protein Heterogeneity on Cryo-EM Particle Stack

EMPIAR 10025 - T20S Proteasome at 2.8 Å Resolution

Particle stack of 161,292 images 400x400 downsampled to 100x100 Pixel spacing: (0.66 Å, 0.66 Å)

Latent dimension = 2

Results – Identifying Protein Heterogeneity on Cryo-EM Data

Conclusions and future work

- By designing models to capture relevant equivariances, we are able to better disentangle content from rotation and translation
- Accurate amortized inference on rotation and translation
- Learn disentangled semantic representations of objects with the ability to generate new images from the object manifold
- In the future
 - Multi object detection and unsupervised object tracking over time
 - Amortized pose inference for 3D reconstruction
 - Fully unsupervised particle picking + 2D classification

Thanks!

SMLC

- Tristan Bepler
- Robert Kiewisz
- Paul Kim
- Darnell Granberry
- Jiayi Shou

SEMC

- Bridget Carragher and Clint Potter
- Alex Noble

York University

- Marcus Brubaker
- Funded by Simons Foundation

SIMONS ELECTRON MICROSCOPY CENTER

NEW YORK STRUCTURAL BIOLOGY CENTER

SIMONS FOUNDATION