Better Best-of-Both-Worlds Bounds for Bandits with Switching Costs

Guy Azov¹, Idan Amir¹, Tomer Koren^{1,2}, Roi Livni¹

¹ Tel-Aviv University ² Google

NeurIPS 2022

Multi-Armed Bandits

Arms (actions) {1, ..., *K*}

At each time step t = 1, 2, ..., T:

- > A loss vector $\ell_t \in [0,1]^K$ is generated by the environment
- > Player generates $p_t \in \Delta^K$ and samples $I_t \sim p_t$.

> Player incurs and observes loss ℓ_{t,I_t} .

Multi-Armed Bandits

- Adversarial (oblivious) regime ℓ_1 , ..., ℓ_t may be entirely arbitrary.
- Stochastically-constrained adversarial regime $\mathbb{E}[\ell_{t,i} \ell_{t,i^*}] = \Delta_i$
 - Generalizes the stochastic regime where losses are generated in an i.i.d manner.

• For
$$K = 2$$
: $\Delta_i \triangleq \Delta$

Player's goal : minimize the pseudo-regret:

$$\overline{\mathcal{R}_T} = \sum_{t \in [T]} \ell_{t,I_t} - \min_{i \in [K]} \sum_{t \in [T]} \mathbb{E}[\ell_{t,i}]$$

If $\overline{\mathcal{R}_T} = o(T)$ -> player is learning

Switching Cost

The player incurs an extra (switching) cost $\lambda > 0$ when she switches actions between rounds.

Switching cost pseudo-regret:

$$\overline{\mathcal{R}_T^{\lambda}} = \sum_{t \in [T]} \ell_{t,I_t} - \min_{i \in [K]} \sum_{t \in [T]} \mathbb{E}[\ell_{t,i}] + \sum_{t \in [T]} \lambda \cdot (\mathbb{1}\{I_t \neq I_{t-1}\})$$

Best-of-Both-Worlds : Bandits with Switching Cost

Stochastic settingAlgorithms: BaSE (Gao et al, 2019)Batched Arm Elimination (Esfandiari et al, 2021)Optimal regret: $O\left(\frac{\ln(T)}{\Delta}\right)$

Adversarial setting

<u>Algorithm:</u> EXP3's variant (Arora et al, 2012) <u>Regret</u>: $O(T^{2/3})$ <u>Lower Bound:</u> $\widetilde{\Omega}(T^{2/3})$ (Dekel et al, 2014)

Follow the Regularized Leader-based approach

Rouyer et al (2021) proposed *Tsallis-Switch* - a batched version of *Tsallis-INF* (Zimmert & Seldin, 2019).

Oblivious Adversarial Setting:

$$\mathbb{E}[\overline{\mathcal{R}_T^{\lambda=1}}] \le O(T^{2/3}) \qquad \text{Tight}$$

Stochastically Constrained Setting:

$$\mathbb{E}[\overline{\mathcal{R}_T^{\lambda=1}}] \le O\left(\frac{T^{1/3} + \log T}{\Delta}\right) \qquad \qquad \text{Tight ?}$$

Can we do better?

NeurIPS 2022 - Better Best-of-Both-Worlds Bounds for Bandits with Switching Costs

Our Main Results

We designed an algorithm that obtain the following regret bounds :

➢Oblivious Adversarial Setting:

$$\mathbb{E}[\overline{\mathcal{R}_T^{\lambda=1}}] \leq O(T^{2/3})$$

Stochastically Constrained Setting:

$$\mathbb{E}[\overline{\mathcal{R}_T^{\lambda=1}}] \le O\left(\min\left\{\left(\frac{\log T}{\Delta^2} + \frac{\log T}{\Delta}\right), T^{2/3}\right\}\right)$$

Potentially improves by a factor of $\tilde{O}(T^{1/3}\Delta)$

NeurIPS 2022 - Better Best-of-Both-Worlds Bounds for Bandits with Switching Costs

Algorithm

Key observation:

Under the stochastically constrained setting, the number of switches, S, is bounded by:

Switch Tsallis, Switch!

Start playing the original *Tsallis-INF* (Zimmert & Seldin, 2019). If $S \ge O(T^{2/3})$: If we made too many switches – we are in the adversarial regime

> Play *Tsallis-INF* over blocks of size $O(T^{1/3})$

Can we do even better?

NeurIPS 2022 - Better Best-of-Both-Worlds Bounds for Bandits with Switching Costs

Our Main Results

Lower Bound

Given a randomized player in the multi-armed bandits game with $\mathbb{E}[\overline{\mathcal{R}_T^{\lambda=1}}] \leq O(T^{2/3})$ under the adversarial regime, for every $\Delta > 0$ there exists a sequence of stochastically constrained losses ℓ_1, \ldots, ℓ_t with a minimal gap Δ , such that the player incurs:

$$\overline{\mathcal{R}_T^{\lambda=1}} = \widetilde{\Omega}\left(\min\left\{\frac{1}{\Delta^2}, T^{2/3}\right\}\right)$$

For K > 2 - there is an interesting gap (check the paper for more information).

Takeaways

We presented Switch Tsallis, Switch!

- Simple and effective algorithm
- Achieve the minimax regret in the *oblivious adversarial* setting (up to logarithmic factors) of $O(T^{2/3})$.
- In the *stochastically constrained* setting obtain the upper bound of $O\left(\min\left\{\left(\frac{\log T}{\Delta^2} + \frac{\log T}{\Delta}\right), T^{2/3}\right\}\right)$.

Potentially improves by a factor of $\tilde{O}(T^{1/3}\Delta)$.

We provided a lower bound which demonstrates that

$$\widetilde{\Omega}\left(\min\left\{\frac{1}{\Delta^2}, T^{2/3}\right\}\right)$$

Switching cost pseudo regret Is unavoidable in the stochastically-constrained case for algorithms with $O(T^{2/3})$ worst-case switching cost pseudo regret.

For K > 2 - there is an interesting gap between the bounds.

Thank You!