Better Best-of-Both-Worlds Bounds for Bandits with Switching Costs

Guy Azov ${ }^{1}$, Idan Amir ${ }^{1}$, Tomer Koren ${ }^{1,2}$, Roi Livni ${ }^{1}$

${ }^{1}$ Tel-Aviv University ${ }^{2}$ Google

NeurIPS 2022

Multi-Armed Bandits

Arms (actions) $\{1, \ldots, K\}$
At each time step $t=1,2, \ldots, T$:
\Rightarrow A loss vector $\ell_{t} \in[0,1]^{K}$ is generated by the environment
$>$ Player generates $p_{t} \in \Delta^{K}$ and samples $I_{t} \sim p_{t}$.
$>$ Player incurs and observes loss $\ell_{t, I_{t}}$.

Multi-Armed Bandits

- Adversarial (oblivious) regime $-\ell_{1}, \ldots, \ell_{t}$ may be entirely arbitrary.
- Stochastically-constrained adversarial regime - $\mathbb{E}\left[\ell_{t, i}-\ell_{t, i^{*}}\right]=\Delta_{i}$
- Generalizes the stochastic regime where losses are generated in an i.i.d manner.
- For $K=2: \Delta_{i} \triangleq \Delta$

Player's goal : minimize the pseudo-regret:

$$
\overline{\mathcal{R}_{T}}=\sum_{t \in[T]} \ell_{t, I_{t}}-\min _{i \in[K]} \sum_{t \in[T]} \mathbb{E}\left[\ell_{t, i}\right]
$$

If $\overline{\mathcal{R}_{T}}=\mathrm{o}(\mathrm{T})->$ player is learning

Switching Cost

The player incurs an extra (switching) cost $\lambda>0$ when she switches actions between rounds.

Switching cost pseudo-regret:

$$
\overline{\mathcal{R}_{T}^{\lambda}}=\sum_{t \in[T]} \ell_{t, I_{t}}-\min _{i \in[K]} \sum_{t \in[T]} \mathbb{E}\left[\ell_{t, i}\right]+\sum_{t \in[T]}^{\Gamma} \lambda \cdot\left(\mathbb{1}\left\{I_{t} \neq I_{t-1}\right\}\right)
$$

NeurIPS 2022 - Better Best-of-Both-Worlds Bounds for Bandits

Best-of-Both-Worlds : Bandits with Switching Cost

Stochastic setting

Algorithms: BaSE (Gao et al, 2019)
Batched Arm Elimination (Esfandiari et al, 2021)
Optimal regret: $O\left(\frac{\ln (T)}{\Delta}\right)$

Adversarial setting

Algorithm: EXP3's variant (Arora et al, 2012)
Regret: $O\left(T^{2 / 3}\right)$
Lower Bound: $\widetilde{\Omega}\left(T^{2 / 3}\right)$ (Dekel et al, 2014)
\rightarrow Follow the Regularized Leader-based approach
Rouyer et al (2021) proposed Tsallis-Switch - a batched version of Tsallis-INF (Zimmert \& Seldin, 2019).

Oblivious Adversarial Setting:

$$
\mathbb{E}\left[\overline{\mathcal{R}_{T}^{\lambda=1}}\right] \leq O\left(T^{2 / 3}\right)
$$

Tight
Stochastically Constrained Setting:

$$
\mathbb{E}\left[\overline{\mathcal{R}_{T}^{\lambda=1}}\right] \leq O\left(\frac{T^{1 / 3}+\log T}{\Delta}\right)
$$

Can we do better?

Our Main Results

We designed an algorithm that obtain the following regret bounds :
$>$ Oblivious Adversarial Setting:

$$
\mathbb{E}\left[\overline{\mathcal{R}_{T}^{\lambda=1}}\right] \leq O\left(T^{2 / 3}\right)
$$

$>$ Stochastically Constrained Setting:

$$
\mathbb{E}\left[\overline{\mathcal{R}_{T}^{\lambda=1}}\right] \leq O\left(\min \left\{\left(\frac{\log T}{\Delta^{2}}+\frac{\log T}{\Delta}\right), T^{2 / 3}\right\}\right)
$$

$$
\text { Potentially improves by a factor of } \tilde{O}\left(\mathrm{~T}^{1 / 3} \Delta\right)
$$

Algorithm

Key observation:

Under the stochastically constrained setting, the number of switches, S, is bounded by:

$$
S \leq O\left(\frac{\overline{\mathcal{R}_{T}}}{\Delta}\right)
$$

Switch Tsallis, Switch!

Start playing the original Tsallis-INF (Zimmert \& Seldin, 2019).
$>$ If $S \geq O\left(T^{2 / 3}\right)$:
If we made too many switches - we are in the adversarial regime
$>$ Play Tsallis-INF over blocks of size $O\left(T^{1 / 3}\right)$

Can we do even better?

Our Main Results

Lower Bound

Given a randomized player in the multi-armed bandits game with $\mathbb{E}\left[\overline{\mathcal{R}_{T}^{\lambda=1}}\right] \leq O\left(T^{2 / 3}\right)$ under the adversarial regime, for every $\Delta>0$ there exists a sequence of stochastically constrained losses $\ell_{1}, \ldots, \ell_{t}$ with a minimal gap Δ, such that the player incurs:

$$
\overline{\mathcal{R}_{T}^{\lambda=1}}=\widetilde{\Omega}\left(\min \left\{\frac{1}{\Delta^{2}}, T^{2 / 3}\right\}\right)
$$

For $K>2$ - there is an interesting gap (check the paper for more information).

Takeaways

We presented Switch Tsallis, Switch!

- Simple and effective algorithm
- Achieve the minimax regret in the oblivious adversarial setting (up to logarithmic factors) of $O\left(T^{2 / 3}\right)$.
- In the stochastically constrained setting obtain the upper bound of $O\left(\min \left\{\left(\frac{\log T}{\Delta^{2}}+\frac{\log T}{\Delta}\right), T^{2 / 3}\right\}\right)$.

Potentially improves by a factor of $\tilde{O}\left(\mathrm{~T}^{1 / 3} \Delta\right)$.

We provided a lower bound which demonstrates that

$$
\widetilde{\Omega}\left(\min \left\{\frac{1}{\Delta^{2}}, T^{2 / 3}\right\}\right)
$$

Switching cost pseudo regret Is unavoidable in the stochastically-constrained case for algorithms with $O\left(T^{2 / 3}\right)$ worst-case switching cost pseudo regret.

For $K>2$ - there is an interesting gap between the bounds.

Thank You!

