Efficient Graph Similarity Computation with Alignment Regularization

Wei Zhuo, Guang Tan
Shenzhen Campus of Sun Yat-sen University (SYSU), China
zhuow5@mail2.sysu.edu.cn

Graph Similarity Computation: Graph Edit Distance (GED)

GNN for GED Computation

GNN-based Models

SimGNN, GMN, GraphSim, MGMN,

GSimCNN, GCN-Mean

Method	Time Complexity	
A* Beam Hungarian $\mathbf{V J}$	$O\left(N_{1} N_{2}\right)$ subexponential $O\left(\left(N_{1}+N_{2}\right)^{3}\right)$ $O\left(\left(N_{1}+N_{2}\right)^{3}\right)$	Combinatorial Search Methods
Siamese MPNN GCNMean GraphSim SimGNN MGMN GMN	$\begin{gathered} \hline O\left(\max \left(E_{1}, E_{2}, N_{1} N_{2}\right)\right) \\ O\left(\max \left(E_{1}, E_{2}\right)\right) \\ O\left(\max \left(N_{1}, N_{2}\right)^{2}\right) \\ O\left(\max \left(N_{1}, N_{2}\right)^{2}\right) \\ O\left(\max \left(N_{1}, N_{2}\right)^{2}\right) \\ O\left(\max \left(N_{1}, N_{2}\right)^{2}\right) \\ \hline \end{gathered}$	GNN-based Methods

Limitation of GNN-base GSC Model

Analyzing GED in Embedding Space

The best matching between two graphs can be inferred by minimizing the difference between the intragraph node-graph similarity and cross-graph node-graph similarity.

Alignment Regularization

Alignment Regularization

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{AReg}}=\frac{1}{L} \sum_{\ell}^{L}{\left.\underset{\downarrow}{\gamma_{i}^{(\ell)}}+\gamma_{j}^{(\ell)}+\left\|\gamma_{i}^{(\ell)}-\gamma_{j}^{(\ell)}\right\|_{2}\right), ~}_{\downarrow}{ }^{L} \\
& \left.\gamma_{i}=\sum_{k}^{N} \| \operatorname{DIST} \frac{\left(\boldsymbol{A}_{\theta}\left(\boldsymbol{A}_{i}[k]\right)\right.}{\begin{array}{c}
\text { Node } \\
\text { Level }
\end{array}} \frac{\begin{array}{c}
\text { Graph } \\
\text { Level }
\end{array}}{g_{\phi}\left(\boldsymbol{A}_{i}\right)}\right)-\operatorname{DIST}\left(f_{\theta}\left(\boldsymbol{A}_{i}[k]\right), g_{\phi}\left(\pi\left(\boldsymbol{A}_{j}\right)\right)\right) \|_{2} \\
& f_{\theta}^{(\ell)}\left(\mathbf{A}_{i}[k]\right)=\operatorname{MLP}_{\theta}^{(\ell)}\left(\left(1+\xi^{(\ell)}\right) \mathbf{H}_{i}^{(\ell-1)}[k]+\mathbf{A}_{i}[k] \mathbf{H}_{i}^{(\ell-1)}\right) \quad g_{\phi}^{(\ell)}\left(\mathbf{A}_{i}\right)=\operatorname{MLP}_{\phi}^{(\ell)}\left(\sum_{k}^{N} f_{\theta}^{(\ell)}\left(\mathbf{A}_{i}[k]\right)\right)
\end{aligned}
$$

GNN for GED Computation

Multi-Scale GED Discriminator

(a) NTN

(b) ℓ_{2} distance

(c) $\mathrm{NTN}+\ell_{2}$ distance

Efficient gRaph slmilarity Computation (ERIC)

Accuracy and Efficiency Comparison

Table 1: Evaluation on benchmarks. Bold : best.

	AIDS700					LINUX					IMDB					NCI109				
	$\begin{gathered} \text { mse } \\ \left(\times 10^{-3}\right)^{\downarrow} \end{gathered}$	$\rho \uparrow$	$\tau \uparrow$	$p @ 10 \uparrow$	$p @ 20 \uparrow$	$\begin{gathered} \text { mse } \\ \left(\times 10^{-3}\right)^{\downarrow} \end{gathered}$	$\rho \uparrow$	$\tau \uparrow$	$p @ 10 \uparrow$	$p @ 20 \uparrow$	$\begin{gathered} \text { mse } \\ \left(\times 10^{-3}\right) \downarrow \end{gathered}$	$\rho \uparrow$	$\tau \uparrow$	$p @ 10 \uparrow$	$p @ 20 \uparrow$	$\begin{gathered} \mathrm{mse} \\ \left(\times 10^{-3}\right)^{\downarrow} \\ \downarrow \end{gathered}$	$\rho \uparrow$	$\tau \uparrow$	$p @ 10 \uparrow$	$p @ 20 \uparrow$
Beam	12.090	0.609	0.463	0.481	0.493	9.268	0.827	0.714	0.973	0.924	-	-	-	-	-	-	-	-	-	-
VJ	29.157	0.517	0.383	0.310	0.345	63.86	0.581	0.450	0.287	0.251	-	-	-	-	-	-	-	-	-	-
Hungarian	25.296	0.510	0.378	0.360	0.392	29.81	0.638	0.517	0.913	0.836	-	-	-	-	-	-	-	-	-	-
SimGNN	1.573	0.835	0.678	0.417	0.489	2.479	0.912	0.791	0.635	0.650	1.437	0.871	0.752	0.710	0.769	7.767	0.576	0.435	0.023	0.040
GraphSim	2.014	0.839	0.662	0.401	0.499	0.762	0.953	0.882	0.956	0.951	1.924	0.825	0.821	0.813	0.825	6.752	0.557	0.497	0.086	0.092
GMN	4.610	0.672	0.497	0.200	0.263	2.571	0.906	0.763	0.888	0.856	4.320	0.665	0.601	0.588	0.593	11.710	0.336	0.358	0.017	0.019
EGSC	1.676	0.888	0.723	0.604	0.708	0.214	0.984	0.897	0.987	0.989	0.573	0.939	0.829	0.872	0.883	9.356	0.545	0.414	0.055	0.078
MGMN	2.297	0.904	0.736	0.456	0.534	2.040	0.965	0.858	0.956	0.920	0.496	0.881	0.803	0.874	0.861	9.631	0.492	0.426	0.015	0.051
ERIC	1.374	0.906	0.741	0.685	0.758	0.107	0.988	0.908	0.994	0.999	0.385	0.890	0.791	0.882	0.891	6.327	0.591	0.525	0.118	0.127

Table 4: Inference time (sec) comparison.

- ERIC consistently achieve state-of-the-arts performance across all evaluation metric.

Dataset	SimGNN	GraphSim	GMN	MGMN	EGSC	ERIC
AIDS700	10.773	14.043	23.975	11.337	8.763	$\mathbf{6 . 6 6 2}$
LINUX	19.347	31.238	82.489	22.574	21.573	$\mathbf{1 8 . 9 6 9}$
IMDB	225.682	379.480	1253.551	357.933	133.437	$\mathbf{4 8 . 7 5 0}$
NCI109	2913.178	3463.620	$>10^{4}$	3726.834	2097.405	$\mathbf{1 7 6 3 . 3 5 6}$

Alignment Regularization can be incorporated into existing methods and improve their performance, such as SimGNN and EGSC.
> ERIC is faster than all baseline models in the inference stage.

Table 3: Transferability study of AReg on AIDS700 and LINUX.

	AIDS700			LINUX		
	mse	ρ	$p @ 10$	mse	ρ	$p @ 10$
SimGNN	1.573	0.835	0.417	2.479	0.912	0.635
SimGNN+AReg	$\mathbf{1 . 4 3 9}$	$\mathbf{0 . 8 5 8}$	$\mathbf{0 . 5 0 6}$	$\mathbf{1 . 9 7 4}$	$\mathbf{0 . 9 4 5}$	$\mathbf{0 . 6 5 8}$
EGSC	1.676	0.888	0.604	0.214	0.984	0.987
EGSC+AReg	$\mathbf{1 . 4 7 8}$	$\mathbf{0 . 9 0 4}$	$\mathbf{0 . 6 4 3}$	$\mathbf{0 . 1 4 2}$	$\mathbf{0 . 9 8 9}$	$\mathbf{0 . 9 9 2}$

Visualization

