Efficient Graph Similarity Computation with Alignment Regularization

Wei Zhuo, Guang Tan

Shenzhen Campus of Sun Yat-sen University (SYSU), China zhuow5@mail2.sysu.edu.cn

Graph Similarity Computation: Graph Edit Distance (GED)

GNN for GED Computation

Limitation of GNN-base GSC Model

Analyzing GED in Embedding Space

The best matching between two graphs can be inferred by minimizing the difference between the intragraph node-graph similarity and cross-graph node-graph similarity.

Alignment Regularization

Alignment Regularization

$$\mathcal{L}_{AReg} = \frac{1}{L} \sum_{\ell}^{L} \left(\gamma_i^{(\ell)} + \gamma_j^{(\ell)} + \left\| \gamma_i^{(\ell)} - \gamma_j^{(\ell)} \right\|_2 \right)$$

$$\gamma_i = \sum_{k}^{N} \|\text{DIST} \left(f_{\theta}(\boldsymbol{A}_i[k]), g_{\phi}(\boldsymbol{A}_i) \right) - \text{DIST} \left(f_{\theta}(\boldsymbol{A}_i[k]), g_{\phi}(\pi(\boldsymbol{A}_j)) \right) \|_2$$

$$Node \quad \text{Graph}$$

$$Level \quad Level$$

$$f_{\theta}^{(\ell)} \left(\mathbf{A}_i[k] \right) = \text{MLP}_{\theta}^{(\ell)} \left(\left(1 + \xi^{(\ell)} \right) \mathbf{H}_i^{(\ell-1)}[k] + \mathbf{A}_i[k] \mathbf{H}_i^{(\ell-1)} \right) \quad g_{\phi}^{(\ell)} \left(\mathbf{A}_i \right) = \text{MLP}_{\phi}^{(\ell)} \left(\sum_{k}^{N} f_{\theta}^{(\ell)} \left(\mathbf{A}_i[k] \right) \right)$$

GNN for GED Computation

Multi-Scale GED Discriminator

Efficient gRaph sImilarity Computation (ERIC)

Accuracy and Efficiency Comparison

AIDS700 LINUX IMDB NCI109 mse mse mse mse $p@10\uparrow$ $p@20\uparrow$ $p@10\uparrow$ $p@20\uparrow$ $\rho\uparrow$ $p@10\uparrow$ $p@20\uparrow$ $\rho\uparrow$ p@201 $\rho\uparrow$ $\tau\uparrow$ p@10(×10⁻³)↓ (×10⁻³)[↓] $\tau\uparrow$ (×10⁻³)↓ ρ 1 τ $(\times 10^{-3})$ 0.609 9.268 0.827 0.973 Beam 12.090 0.463 0.481 0.493 0.714 0.924 0.383 63.86 0.581 0.450 0.287 0.251 VJ 29.157 0.517 0.310 0.345 25.296 0.378 0.510 0.360 0.392 29.81 0.638 0.517 0.913 0.836 Hungarian SimGNN 1.573 0.835 0.678 0.417 0.489 2.479 0.912 0.791 0.635 0.650 1.437 0.871 0.752 0.710 0.769 7.767 0.576 0.435 0.023 0.040 0.839 0.762 0.825 GraphSim 2.014 0.662 0.401 0.499 0.953 0.882 0.956 0.951 1.924 0.825 0.821 0.813 6.752 0.557 0.497 0.086 0.092 GMN 4.610 0.672 0.497 0.200 0.263 2.5710.906 0.763 0.888 0.856 4.320 0.665 0.601 0.588 0.593 11.710 0.336 0.358 0.017 0.019 0.723 EGSC 1.676 0.888 0.604 0.7080.214 0.984 0.897 0.987 0.989 0.573 0.939 0.829 0.8720.883 9.356 0.545 0.414 0.055 0.078 MGMN 2.297 0.904 0.736 0.456 0.534 2.0400.965 0.858 0.956 0.920 0.496 0.881 0.803 0.874 0.861 9.631 0.492 0.426 0.015 0.051 ERIC 1.374 0.906 0.741 0.685 0.758 0.1070.988 0.908 0.994 0.999 0.385 0.890 0.791 0.882 0.891 6.327 0.591 0.525 0.118 0.127

Table 1: Evaluation on benchmarks.Bold : best.

- ERIC consistently achieve state-of-the-arts performance across all evaluation metric.
- Alignment Regularization can be incorporated into existing methods and improve their performance, such as SimGNN and EGSC.
- ERIC is faster than all baseline models in the inference stage.

Table 4: Inference time (sec) comparison.

Dataset	SimGNN	GraphSim	GMN	MGMN	EGSC	ERIC
AIDS700	10.773	14.043	23.975	11.337	8.763	6.662
LINUX	19.347	31.238	82.489	22.574	21.573	18.969
IMDB	225.682	379.480	1253.551	357.933	133.437	48.750
NCI109	2913.178	3463.620	$> 10^{4}$	3726.834	2097.405	1763.356

Table	3:	Transferability	study	of	AReg	on
AIDS7	00	and LINUX.				

	AIDS700			LINUX		
	mse	ρ	p@10	mse	ρ	p@10
SimGNN	1.573	0.835	0.417	2.479	0.912	0.635
SimGNN+AReg	1.439	0.858	0.506	1.974	0.945	0.658
EGSC	1.676	0.888	0.604	0.214	0.984	0.987
EGSC+AReg	1.478	0.904	0.643	0.142	0.989	0.992

Visualization

