

Learning to Scaffold: Optimizing Model Explanations for Teaching

Patrick Fernandes*

Marcos Treviso*

Danish Pruthi

André Martins

Graham Neubig

November 28th

How should we evaluate explanations?

- Explainability methods generally do not correlate with each other
- Most explanations do not help to predict the model's outputs and/or failures

How should we evaluate explanations?

- Explainability methods generally do not correlate with each other
- Most explanations do not help to predict the model's outputs and/or failures
- Simulability: "can we recover the model's output based on the explanation?"
 - ✓ aligns with the goal of communicating the underlying model behavior
 - ✓ is easily measurable (both manually and automatically)
 - ✓ puts all explainability methods under a single perspective

How should we evaluate explanations?

- Explainability methods generally do not correlate with each other
- Most explanations do not help to predict the model's outputs and/or failures
- Simulability: "can we recover the model's output based on the explanation?"
 - ✓ aligns with the goal of communicating the underlying model behavior
 - ✓ is easily measurable (both manually and automatically)
 - ✓ puts all explainability methods under a single perspective
- Pruthi et al. (2021) proposed a framework for measuring simulability that disregards **trivial protocols \vec{4}**

(training time) $heta^\star = rg\max_ heta \mathbb{E}_{x \sim \mathcal{D}_{ ext{train}}} ig[\mathcal{L}_{ ext{sim}}(\, T(x) \,, \, S_ heta(x) \,) ig]$

$$(\text{training time}) \qquad \theta^{\star} = \arg \max_{\theta} \mathbb{E}_{x \sim \mathcal{D}_{\text{train}}} \big[\mathcal{L}_{\text{sim}}(T(x), S_{\theta}(x)) \big]_{\substack{\text{teacher} \\ \text{student}}}$$

 $\theta^{\star} = \arg \max_{\theta} \mathbb{E}_{x \sim \mathcal{D}_{\text{train}}} \begin{bmatrix} \mathcal{L}_{\text{sim}}(T(x), S_{\theta}(x)) \end{bmatrix}$

$$\theta^{\star} = \arg \max_{\theta} \mathbb{E}_{x \sim \mathcal{D}_{\text{train}}} \begin{bmatrix} \mathcal{L}_{\text{sim}}(T(x), S_{\theta}(x)) \end{bmatrix}$$

(test time)
$$\operatorname{SIM}(T,S_{ heta}) = \mathbb{E}_{x \sim \mathcal{D}_{ ext{test}}}ig[1\set{T(x) = S_{ heta}(x)}ig]$$

$$\theta^{\star} = \arg \max_{\theta} \mathbb{E}_{x \sim \mathcal{D}_{\text{train}}} \begin{bmatrix} \mathcal{L}_{\text{sim}}(T(x), S_{\theta}(x)) \end{bmatrix}$$

(test time)
$$\operatorname{SIM}(T,S_{ heta}) = \mathbb{E}_{x \sim \mathcal{D}_{ ext{test}}} \left[1\{ T(x) = S_{ heta}(x) \}
ight]$$

$$\theta^{\star} = \arg \max_{\theta} \mathbb{E}_{x \sim \mathcal{D}_{\text{train}}} \begin{bmatrix} \mathcal{L}_{\text{sim}}(T(x), S_{\theta}(x)) \end{bmatrix}$$

(test time)
$$\operatorname{SIM}(T,S_{ heta}) = \mathbb{E}_{x \sim \mathcal{D}_{ ext{test}}} \left[1\{ \, T(x) = S_{ heta}(x) \, \}
ight]$$

$$\theta^{\star} = \arg \max_{\theta} \mathbb{E}_{x \sim \mathcal{D}_{\text{train}}} \begin{bmatrix} \mathcal{L}_{\text{sim}}(T(x), S_{\theta}(x)) \end{bmatrix}$$

$$\underbrace{ \text{teacher student}}_{\text{teacher student}}$$

(test time)
$$\operatorname{SIM}(T,S_{ heta}) = \mathbb{E}_{x \sim \mathcal{D}_{ ext{test}}} \left[1\{ T(x) = S_{ heta}(x) \}
ight]$$

$$egin{aligned} & heta_E^\star = rg\max_{ heta} \mathbb{E}_{x \sim \mathcal{D}_{ ext{train}}} igg[rac{\mathcal{L}_{ ext{sim}}(T(x)\,,\,S_{ heta}(x)\,)}{simulability\, ext{loss}} + eta \mathcal{L}_{ ext{expl}}(\,E_T(x)\,,\,E_{S_{ heta}}(x)) igg] \end{aligned}$$

$$\theta^{\star} = \arg \max_{\theta} \mathbb{E}_{x \sim \mathcal{D}_{\text{train}}} \begin{bmatrix} \mathcal{L}_{\text{sim}}(T(x), S_{\theta}(x)) \end{bmatrix}$$

$$\underbrace{teacher}_{teacher} \underbrace{student}_{teacher}$$

(test time)
$$\operatorname{SIM}(T,S_{ heta}) = \mathbb{E}_{x \sim \mathcal{D}_{ ext{test}}} \left[1\{ \, T(x) = S_{ heta}(x) \, \}
ight]$$

$$heta_{E}^{\star} = rg \max_{ heta} \mathbb{E}_{x \sim \mathcal{D}_{ ext{train}}} \left[\mathcal{L}_{ ext{sim}}(T(x), S_{ heta}(x)) + eta \mathcal{L}_{ ext{expl}}(E_{T}(x), E_{S_{ heta}}(x))
ight]$$

$$\theta^{\star} = \arg \max_{\theta} \mathbb{E}_{x \sim \mathcal{D}_{\text{train}}} \begin{bmatrix} \mathcal{L}_{\text{sim}}(T(x), S_{\theta}(x)) \end{bmatrix}$$

(test time)
$$\operatorname{SIM}(T,S_{ heta}) = \mathbb{E}_{x \sim \mathcal{D}_{\operatorname{test}}} \left[\underbrace{\mathbb{1} \{ \, T(x) = S_{ heta}(x) \, \} }_{agreement} \right]$$

$$egin{aligned} & heta_E^\star = rg\max_{ heta} \mathbb{E}_{x \sim \mathcal{D}_{ ext{train}}} igg[\mathcal{L}_{ ext{sim}}(T(x)\,,\,S_{ heta}(x)\,) + eta \mathcal{L}_{ ext{expl}}(E_T(x)\,,\,E_{S_{ heta}}(x)) igg] \ & ext{ simulability loss } explainer regularizer (e.g., KL) \end{aligned}$$
(standard simulability) $ext{SIM}(T,S_{ heta^\star})$

$$\theta^{\star} = \arg \max_{\theta} \mathbb{E}_{x \sim \mathcal{D}_{\text{train}}} \begin{bmatrix} \mathcal{L}_{\text{sim}}(T(x), S_{\theta}(x)) \end{bmatrix}$$

(test time)
$$\operatorname{SIM}(T,S_{ heta}) = \mathbb{E}_{x \sim \mathcal{D}_{\operatorname{test}}} \left[1\{T(x) = S_{ heta}(x)\} \right]$$

Introducing explanations: Teacher and Student explainers $E_T(x)$, $E_S(x)$

$$egin{aligned} & heta_E^\star = rg\max_{ heta} \mathbb{E}_{x \sim \mathcal{D}_{ ext{train}}} igg[\mathcal{L}_{ ext{sim}}(T(x) \,,\, S_{ heta}(x) \,) + eta \mathcal{L}_{ ext{expl}}(E_T(x) \,,\, E_{S_{ heta}}(x)) igg] \ & ext{ simulability loss } explainer regularizer (e.g., KL) \end{aligned}$$
(standard simulability) $ext{SIM}(T, S_{ heta^\star}) < ext{SIM}(T, S_{ heta^\star}) \ & ext{(scaffolded simulability)} \end{aligned}$

Evaluating Explanations: How much do explanations from the teacher aid students? Pruthi et. al. 2021. (TACL)

$$\theta^{\star} = \arg \max_{\theta} \mathbb{E}_{x \sim \mathcal{D}_{\text{train}}} \begin{bmatrix} \mathcal{L}_{\text{sim}}(T(x), S_{\theta}(x)) \end{bmatrix}$$

(test time)
$$\operatorname{SIM}(T,S_{ heta}) = \mathbb{E}_{x \sim \mathcal{D}_{ ext{test}}} \left[1\{T(x) = S_{ heta}(x)\} \right]$$

Introducing explanations: Teacher and Student explainers $E_T(x)$, $E_S(x)$

$$egin{aligned} & heta_E^\star = rg\max_{ heta} \mathbb{E}_{x \sim \mathcal{D}_{ ext{train}}} igg[\mathcal{L}_{ ext{sim}}(T(x)\,,\,S_{ heta}(x)\,) + eta \mathcal{L}_{ ext{expl}}(E_T(x)\,,\,E_{S_{ heta}}(x)) igg] \ & ext{ simulability loss } explainer regularizer (e.g., KL) \end{aligned}$$
(standard simulability) $ext{SIM}(T,S_{ heta^\star}) < ext{SIM}(T,S_{ heta^\star}) \ & ext{(scaffolded simulability)} \end{aligned}$

Can we **learn explainers** $\phi(E)$ that optimize **simulability**?

(scaffolded simulability)

 $\mathrm{SIM}(T,S_{ heta_E^\star})\,<\,\mathrm{SIM}(T,S_{ heta_{\phi(E)}})$ (optim. scaffolded simulability)

• Scaffold-Maximizing Training (SMaT) framework

 $\mathcal{L}_{ ext{student}}(x;T,E_T,S_ heta,E_S) = \mathcal{L}_{ ext{sim}}(\,T(x)\,,\,S_ heta(x)\,) + eta \mathcal{L}_{ ext{expl}}(\,E_T(x)\,,\,E_{S_ heta}(x))$

• Scaffold-Maximizing Training (SMaT) framework

 $\mathcal{L}_{ ext{student}}(x;T,E_T,S_ heta,E_S) = rac{\mathcal{L}_{ ext{sim}}(\,T(x)\,,\,S_ heta(x)\,)}{\mathcal{L}_{ ext{student}}(\,x)\,+eta\mathcal{L}_{ ext{expl}}(\,E_T(x)\,,\,E_{S_ heta}(x))}$

• Scaffold-Maximizing Training (SMaT) framework

$$\mathcal{L}_{\text{student}}(x; T, E_T, S_{\theta}, E_S) = \mathcal{L}_{\text{sim}}(T(x), S_{\theta}(x)) + \beta \mathcal{L}_{\text{expl}}(E_T(x), E_{S_{\theta}}(x))$$
$$\mathcal{L}_{\text{student}}(x; T, E_{\phi_T}, S_{\theta}, E_{\phi_S}) = \mathcal{L}_{\text{sim}}(T(x), S_{\theta}(x)) + \beta \mathcal{L}_{\text{expl}}(E_{\phi_T}(x), E_{\phi_S}(x))$$

parameterized explainers

• Scaffold-Maximizing Training (SMaT) framework

$$\mathcal{L}_{ ext{student}}(x; T, E_T, S_{ heta}, E_S) = \mathcal{L}_{ ext{sim}}(T(x), S_{ heta}(x)) + eta \mathcal{L}_{ ext{expl}}(E_T(x), E_{S_{ heta}}(x))$$
 $\mathcal{L}_{ ext{student}}(x; T, E_{\phi_T}, S_{ heta}, E_{\phi_S}) = \mathcal{L}_{ ext{sim}}(T(x), S_{ heta}(x)) + eta \mathcal{L}_{ ext{expl}}(E_{\phi_T}(x), E_{\phi_S}(x))$
 $simulability loss$
 $parameterized$
 $explainers$

• Bi-level optimization:

(inner opt.)

$$egin{aligned} eta^\star(\phi_T), \, \phi^\star_S(\phi_T) = rg\max_{ heta, \phi_S} \mathbb{E}_{x \sim \mathcal{D}_{ ext{train}}}ig[\mathcal{L}_{ ext{student}}(x; T, E_{\phi_T}, S_ heta, E_{\phi_S})ig] \end{aligned}$$

student parameters and student explainer parameters

• Scaffold-Maximizing Training (SMaT) framework

$$\mathcal{L}_{ ext{student}}(x;T,E_T,S_ heta,E_S) = \mathcal{L}_{ ext{sim}}(T(x),S_ heta(x)) + eta \mathcal{L}_{ ext{expl}}(E_T(x),E_{S_ heta}(x))$$
 $\mathcal{L}_{ ext{student}}(x;T,E_{\phi_T},S_ heta,E_{\phi_S}) = \mathcal{L}_{ ext{sim}}(T(x),S_ heta(x)) + eta \mathcal{L}_{ ext{expl}}(E_{\phi_T}(x),E_{\phi_S}(x))$
 $simulability loss$
 $parameterized$
 $explainers$

• Bi-level optimization:

(inner opt.)

$$egin{aligned} eta^\star(\phi_T), \, \phi^\star_S(\phi_T) = rg\max_{ heta, \phi_S} \mathbb{E}_{x \sim \mathcal{D}_{ ext{train}}}ig[\mathcal{L}_{ ext{student}}(x; T, E_{\phi_T}, S_ heta, E_{\phi_S})ig] \end{aligned}$$

student parameters and student explainer parameters

$$\phi_T^{\star} = rg \max_{\phi_T} \mathbb{E}_{x \sim \mathcal{D}_{\text{test}}} \left[\mathcal{L}_{\text{sim}}(T(x), S_{\theta^{\star}(\phi_T)})
ight]$$

teacher explainer parameters

How can we optimize this?

• Bi-level optimization:

(inner opt.)

$$egin{aligned} eta^\star(\phi_T), \, \phi^\star_S(\phi_T) = rg\max_{ heta, \phi_S} \mathbb{E}_{x \sim \mathcal{D}_{ ext{train}}}ig[\mathcal{L}_{ ext{student}}(x; T, E_{\phi_T}, S_ heta, E_{\phi_S})ig] \end{aligned}$$

student parameters and student explainer parameters

$$\phi_T^{\star} = rg \max_{\phi_T} \mathbb{E}_{x \sim \mathcal{D}_{\text{test}}} \left[\mathcal{L}_{\text{sim}}(T(x), S_{\theta^{\star}(\phi_T)})
ight]$$

teacher explainer parameters

How can we optimize this?

• Assume the explainers are differentiable

• Bi-level optimization:

(inner opt.)

$$egin{aligned} eta^\star(\phi_T), \, \phi^\star_S(\phi_T) = rg\max_{ heta, \phi_S} \mathbb{E}_{x \sim \mathcal{D}_{ ext{train}}}ig[\mathcal{L}_{ ext{student}}(x; T, E_{\phi_T}, S_ heta, E_{\phi_S})ig] \end{aligned}$$

student parameters and student explainer parameters

$$\phi_T^{\star} = rg \max_{\phi_T} \mathbb{E}_{x \sim \mathcal{D}_{\text{test}}} \left[\mathcal{L}_{\text{sim}}(T(x), S_{\theta^{\star}(\phi_T)}) \right]$$

teacher explainer parameters

How can we optimize this?

- Assume the explainers are differentiable
- Explicit differentiation with a truncated gradient update

• Bi-level optimization:

(inner opt.)

$$egin{aligned} eta^\star(\phi_T), \phi^\star_S(\phi_T) = rg\max_{ heta, \phi_S} \mathbb{E}_{x \sim \mathcal{D}_{ ext{train}}}ig[\mathcal{L}_{ ext{student}}(x; T, E_{\phi_T}, S_ heta, E_{\phi_S})ig] \end{aligned}$$

student parameters and student explainer parameters

$$\phi_T^{\star} = rg \max_{\phi_T} \mathbb{E}_{x \sim \mathcal{D}_{\text{test}}} \left[\mathcal{L}_{\text{sim}}(T(x), S_{\theta^{\star}(\phi_T)})
ight]$$

teacher explainer parameters

How can we optimize this?

- Assume the explainers are differentiable
- Explicit differentiation with a truncated gradient update
- Diff. through a gradient operation ⇔ JAX for Hessian-vector products
- Bi-level optimization:

(inner opt.)

$$egin{aligned} η^\star(\phi_T), \, \phi^\star_S(\phi_T) = rg\max_{ heta,\phi_S} \mathbb{E}_{x\sim\mathcal{D}_{ ext{train}}}ig[\mathcal{L}_{ ext{student}}(x;T,E_{\phi_T},S_ heta,E_{\phi_S})ig] \end{aligned}$$

student parameters and student explainer parameters

$$\phi_T^{\star} = rg \max_{\phi_T} \mathbb{E}_{x \sim \mathcal{D}_{\text{test}}} \left[\mathcal{L}_{\text{sim}}(T(x), S_{\theta^{\star}(\phi_T)})
ight]$$

teacher explainer parameters

• Head-level parameterization:

 $\lambda_T = ext{normalize}(\phi_T) \in riangle_{H-1}$

• Head-level parameterization:

 $\mathrm{sparsemax}(z) = \mathrm{arg\,min}_{p \in riangle_{H-1}} \, \|p-z\|_2$

$$\lambda_T = ext{normalize}(\phi_T) \in riangle_{H-1}$$

- Text classification (IMDB)
- Image classification (CIFAR-100)
- Machine Translation Quality Estimation (MLQE-PE)

- Text classification (IMDB)
- Image classification (CIFAR-100)
- Machine Translation Quality Estimation (MLQE-PE)

- Text classification (IMDB)
- Image classification (CIFAR-100)
- Machine Translation Quality Estimation (MLQE-PE)

- Text classification (IMDB)
- Image classification (CIFAR-100)
- Machine Translation Quality Estimation (MLQE-PE)

- Text classification (IMDB)
- Image classification (CIFAR-100)
- Machine Translation Quality Estimation (MLQE-PE)

- Text classification (IMDB)
- Image classification (CIFAR-100)
- Machine Translation Quality Estimation (MLQE-PE)

- Text classification (IMDB)
- Image classification (CIFAR-100)
- Machine Translation Quality Estimation (MLQE-PE)

- Text classification (IMDB)
- Image classification (CIFAR-100)
- Machine Translation Quality Estimation (MLQE-PE)

- Text classification (IMDB)
- Image classification (CIFAR-100)
- Machine Translation Quality Estimation (MLQE-PE)

- Text classification (IMDB)
- Image classification (CIFAR-100)
- Machine Translation Quality Estimation (MLQE-PE)

• *Plausiblity (human-likeness)* of the explainers

Text Classification									
	AUC								
Grad. L2	0.65								
Grad. \times Input	0.51								
Integrated Grad.	0.53								
Attn. (all layers)	0.68								
Attn. (last layer)	0.61								
Attn. (SMaT)	0.73								
Attn. (best layer)*	0.75								
Attn. (best head)*	0.75								

Quality Estimation

	OVE	ERALL
	src.	tgt.
Gradient L2	0.67	0.59
Gradient \times Input	0.61	0.54
Integrated Gradients	0.62	0.53
Attention (all layers)	0.62	0.59
Attention (last layer)	0.54	0.50
Attention (SMaT)	0.66	0.60
Attention (best layer)*	0.65	0.65
Attention (best head)*	0.67	0.66

• *Plausiblity (human-likeness)* of the explainers

Text Classification										
	AUC									
Grad. L2	0.65									
Grad. \times Input	0.51									
Integrated Grad.	0.53									
Attn. (all layers)	0.68									
Attn. (last layer)	0.61									
Attn. (SMaT)	0.73									
Attn. (best layer)*	0.75									
Attn. (best head)*	0.75									

Image ClassificationRank TrueSkillGrad. \times Input 3-4 -2.7 \pm .67Integ. Grad. 3-4 -2.1 \pm .67Attn. (all lx.) 2 0.7 \pm .67Attn. (SMaT) 1 4.3 \pm .70

Quality Estimation

	OVE	ERALL
	src.	tgt.
Gradient L2	0.67	0.59
Gradient \times Input	0.61	0.54
Integrated Gradients	0.62	0.53
Attention (all layers)	0.62	0.59
Attention (last layer)	0.54	0.50
Attention (SMaT)	0.66	0.60
Attention (best layer)*	0.65	0.65
Attention (best head)*	0.67	0.66

• Plausiblity (human-likeness) of the explainers

Text Classification										
	AUC									
Grad. L2	0.65									
Grad. \times Input	0.51									
Integrated Grad.	0.53									
Attn. (all layers)	0.68									
Attn. (last layer)	0.61									
Attn. (SMaT)	0.73									
Attn. (best layer)*	0.75									
Attn. (best head)*	0.75									

Image Classification												
Rank TrueSkill												
Grad. × Input	3-4	-2.7±.67										
Integ. Grad.	3-4	-2.1±.67										
Attn. (all lx.)	2	0.7±.67										
Attn. (SMaT)	1	4.3±.70										

Quality Estimation

	OVE	ERALL
	src.	tgt.
Gradient L2	0.67	0.59
Gradient \times Input	0.61	0.54
Integrated Gradients	0.62	0.53
Attention (all layers)	0.62	0.59
Attention (last layer)	0.54	0.50
Attention (SMaT)	0.66	0.60
Attention (best layer)*	0.65	0.65
Attention (best head)*	0.67	0.66

attention (all layers):				i '	ve	see	en	river	##c	lan	ce	in	perso	on a	nd	n	othi	ng	CO	om	ipa	res		
to	th	e vic	leo ,	but	th	e	sho	w i	s a	weso	me	. tł	he	dar	ncers	are	aı	ma	zing		th	e	mı	isic
is	im	pact	##ir	ng.	and	łt	he	ove	ral	l per	form	nano	ce	is	outsta	andi	ng		i ' '	ve	ne	₹V	er	
se	en	anyt	hing	like	it	1	i sı	ıgg	est	that	you	se	ee	this	show	w i	fy	ou	car	n !	!	!		

attention (SMaT): i ' ve seen river ##dance in person and nothing compares to the video, but the show is awesome. the dancers are amazing. the music is impact ##ing. and the overall performance is outstanding. i ' ve never seen anything like it ! i suggest that you see this show if you can ! ! !

• *Plausiblity (human-likeness)* of the explainers

Text Classification										
	AUC									
Grad. L2	0.65									
Grad. \times Input	0.51									
Integrated Grad.	0.53									
Attn. (all layers)	0.68									
Attn. (last layer)	0.61									
Attn. (SMaT)	0.73									
Attn. (best layer)*	0.75									
Attn. (best head)*	0.75									

image Classification													
Rank TrueSkill													
Grad. \times Input	3-4	-2.7±.67											
Integ. Grad.	3-4	-2.1±.67											
Attn. (all lx.)	2	$0.7 \pm .67$											
Attn. (SMaT)	1	4.3±.70											

Quality Estimation

	OVE	ERALL
	src.	tgt.
Gradient L2	0.67	0.59
Gradient \times Input	0.61	0.54
Integrated Gradients	0.62	0.53
Attention (all layers)	0.62	0.59
Attention (last layer)	0.54	0.50
Attention (SMaT)	0.66	0.60
Attention (best layer)*	0.65	0.65
Attention (best head)*	0.67	0.66

attention (all layers):			i	1	ve	s	een	river	##d	ance	in	perso	on a	nd	n	othin	g	CO	om	ipa	res			
to	th	e vic	leo	,	but	the		sho	W	is	awesc	me	. the	da	ncers	are	aı	ma	zing		th	e	mu	isic
is	im	pact	##i	ng	g . :	and	t	he	01	/era	ll per	form	ance	is	outsta	andi	ng		i ' v	<i>e</i>	ne	eve	er	
see	en	anyt	hing	1	ike	it	!	i s	ug	gest	that	you	see	thi	s sho	w i	fy	ou	can	!	!	!		

attention (SMaT): i ' ve seen river ##dance in person and nothing compares to the video, but the show is awesome . the dancers are amazing . the music is impact ##ing . and the overall performance is outstanding . i ' ve never seen anything like it ! i suggest that you see this show if you can ! ! !

Input image Integ. Grad. Attn. (all lx.) Attn. (SMaT)

• Normalization functions $\lambda_T = \operatorname{normalize}(\phi_T) \in riangle_{H-1}$

• Normalization functions $\lambda_T = \operatorname{normalize}(\phi_T) \in riangle_{H-1}$

• Normalization functions $\lambda_T = \operatorname{normalize}(\phi_T) \in riangle_{H-1}$

Only a small subset of attention heads are deemed relevant by SMaT

CIFAR-100

Conclusions

- SMaT is a framework that optimizes explanations for teaching students
 - SMaT leads to **high simulability**
 - SMaT learns **plausible explanations**
- We hope this work motivates the interpretability community to consider **scaffolding** as valuable criterion **for evaluating and designing new methods**

(paper) arxiv.org/abs/2204.10810

(code) github.com/CoderPat/learning-scaffold

- **Simulability** is particularly appealing for evaluating explanations
 - ✓ aligns with the goal of communicating the underlying model behavior
 - ✓ is easily measurable (both manually and automatically)
 - ✓ puts all explainability methods under a single perspective

- **Simulability** is particularly appealing for evaluating explanations
 - ✓ aligns with the goal of communicating the underlying model behavior
 - ✓ is easily measurable (both manually and automatically)
 - ✓ puts all explainability methods under a single perspective
- Pruthi et al. (2021) proposed a framework for measuring simulability that

- **Simulability** is particularly appealing for evaluating explanations
 - ✓ aligns with the goal of communicating the underlying model behavior
 - ✓ is easily measurable (both manually and automatically)
 - ✓ puts all explainability methods under a single perspective
- Pruthi et al. (2021) proposed a framework for measuring simulability that

🚖 disregards **trivial protocols**

- **Simulability** is particularly appealing for evaluating explanations
 - ✓ aligns with the goal of communicating the underlying model behavior
 - ✓ is easily measurable (both manually and automatically)
 - ✓ puts all explainability methods under a single perspective
- Pruthi et al. (2021) proposed a framework for measuring simulability that

🖕 disregards **trivial protocols** ______ 🕞

punctuation	symbols	\Rightarrow	positive
stop words		\implies	negative

- Simulability is particularly appealing for evaluating explanations
 - ✓ aligns with the goal of communicating the underlying model behavior
 - ✓ is easily measurable (both manually and automatically)
 - ✓ puts all explainability methods under a single perspective
- Pruthi et al. (2021) proposed a framework for measuring simulability that

punctuation stop words	symbols	\Rightarrow	positive negative	