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- Popular PU learning approaches use neural network classifiers

- RFs are promising but previously under-explored for PU learning tasks
- What we found from our novel PU RF algorithm:

NN RF
Predictive performance o/
Interpretability X v
Hyperparameter robustness X v



Problem Setting

PN (Supervised) Learning PU Learning

@ Positive @ Positive

® Negative ® Unlabeled

- Objective: learn a binary classifier g to minimize the expected risk
R(g) = E(w,y)wp(m,y) Z(g(il?), y)'

- Need to estimate the risk using only positive and unlabeled data



Risk Estimators

- Unbiased (uPU) risk estimator':

may be negative — overfitting
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- Better: Nonnegative (nnPU) risk estimator?:

RnnPU(g Z wPZ(g(w) +1) + max{O Z wyl :C) _1 z wp _1)}
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This paper: Construct decision tree to minimize PU risk estimator

1Mar‘mmus C Du Plessis, Gang Niu, and Masashi Sugiyama. “Analysis of learning from positive and unlabeled data”. In: Advances in neural

et al. “Positive-unlabeled learning with non-negative risk estimator”. In: Adv



PU Decision Tree Construction

Tree-growing by node splitting
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- Use binary splits to partition feature space in a recursive and greedy manner
- Split quality measured by:

- PN Learning: decrease in label impurity based on PN data

- | PU Learning: decrease in risk estimate based on PU data

- Special Cases:
- Quadratic loss — Gini impurity decrease
- Logistic loss — entropy impurity decrease



PU Decision Tree Construction

Optimal Predictions

N Yy =
VAN o

- Estimate proportion v* of positive data at leaf node using weighted PU data

- Binary prediction that minimizes the risk estimator is
+1, v >0.5
-1, v*<05

- For uPU/nnPU risk estimators of many loss functions



Ensemble of PU Decision Trees

PU Extra Trees

- Combine predictions from many PU decision trees with majority vote

- Tree construction randomized for efficiency (based on Extra Trees®)

3pierre Geurts, Damien Ernst, and Louis Wehenkel. “Extremely randomized trees". In: Machine learning 63.1 (2006), pp. 3-42.



Experiments - Predictive Performance

Il PU ET (ours, no hyperparameter tuning)
= PU Neural Net (+ hyperparameter tuning)
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Experiments - Feature Importance

- PU feature importance score is the contribution to empirical risk reduction
- PU ET and supervised ET learn similar feature importances on MNIST.

- Our PU feature importance score is effective for selecting useful features on
UNSW-NB15.
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Conclusions

NN  RF
Predictive performance o/
Interpretability X v
Hyperparameter robustness X v/

- Additional experiments + theoretical results provided in our paper

- Code: https://github.com/puetpaper/PUExtraTrees


https://github.com/puetpaper/PUExtraTrees

