Positive-Unlabeled Learning using Random Forest via Recursive Greedy Risk Minimization

Jonathan Wilton¹, Abigail M. Y. Koay², Ryan K. L. Ko², Miao Xu^{2,3}, Nan Ye¹

¹School of Mathematics and Physics, The University of Queensland

²School of Information Technology and Electrical Engineering, The University of Queensland

³ RIKEN, Japan 103-0027

Motivation

- · Popular PU learning approaches use neural network classifiers
- RFs are promising but previously under-explored for PU learning tasks
- What we found from our novel PU RF algorithm:

	NN	RF
Predictive performance	✓	1
Interpretability	X	1
Hyperparameter robustness	X	1

Background

Problem Setting

 \cdot Objective: learn a binary classifier g to minimize the expected risk

$$R(g) = \mathbb{E}_{(\boldsymbol{x},y) \sim p(\boldsymbol{x},y)} \, \ell(g(\boldsymbol{x}),y).$$

Need to estimate the risk using only positive and unlabeled data

Background

Risk Estimators

· Unbiased (uPU) risk estimator1:

may be negative → overfitting

$$\widehat{R}_{\mathrm{uPU}}(g) := \sum_{\boldsymbol{x} \in P} w_{\mathrm{P}} \ell(g(\boldsymbol{x}), +1) + \sum_{\boldsymbol{x} \in U} w_{\mathrm{u}} \ell(g(\boldsymbol{x}), -1) - \sum_{\boldsymbol{x} \in P} w_{\mathrm{P}} \ell(g(\boldsymbol{x}), -1)$$

• Better: Nonnegative (nnPU) risk estimator²:

$$\widehat{R}_{\text{nnPU}}(g) := \sum_{\boldsymbol{x} \in P} w_{\text{p}} \ell(g(\boldsymbol{x}), +1) + \max \left\{ 0, \sum_{\boldsymbol{x} \in U} w_{\text{u}} \ell(g(\boldsymbol{x}), -1) - \sum_{\boldsymbol{x} \in P} w_{\text{p}} \ell(g(\boldsymbol{x}), -1) \right\}$$

This paper: Construct decision tree to minimize PU risk estimator

¹Marthinus C Du Plessis, Gang Niu, and Masashi Sugiyama. "Analysis of learning from positive and unlabeled data". In: Advances in neural information processing systems 27 (2014).

² Ryuichi Kiryo et al. "Positive-unlabeled learning with non-negative risk estimator". In: Advances in neural information processing systems 30 (2017).

PU Decision Tree Construction

Tree-growing by node splitting

- Use binary splits to partition feature space in a recursive and greedy manner
- Split quality measured by:
 - · PN Learning: decrease in label impurity based on PN data
 - PU Learning: decrease in risk estimate based on PU data
- · Special Cases:
 - $\cdot \ \, \text{Quadratic loss} \rightarrow \text{Gini impurity decrease}$
 - \cdot Logistic loss o entropy impurity decrease

PU Decision Tree Construction

Optimal Predictions

- \cdot Estimate proportion v^* of positive data at leaf node using weighted PU data
- Binary prediction that minimizes the risk estimator is

$$\begin{cases} +1, & v^* > 0.5 \\ -1, & v^* \le 0.5 \end{cases}$$

For uPU/nnPU risk estimators of many loss functions

Ensemble of PU Decision Trees

PU Extra Trees

- · Combine predictions from many PU decision trees with majority vote
- Tree construction randomized for efficiency (based on \underline{E} xtra \underline{T} rees³)

³Pierre Geurts, Damien Ernst, and Louis Wehenkel. "Extremely randomized trees". In: Machine learning 63.1 (2006), pp. 3–42.

Experiments - Predictive Performance

Experiments - Feature Importance

- PU feature importance score is the contribution to empirical risk reduction
- PU ET and supervised ET learn similar feature importances on MNIST.

 Our PU feature importance score is effective for selecting useful features on UNSW-NB15.

Conclusions

	NN	RF
Predictive performance	✓	√
Interpretability	X	1
Hyperparameter robustness	X	1

- · Additional experiments + theoretical results provided in our paper
- $\cdot \ \mathsf{Code:} \ \textit{https://github.com/puetpaper/PUExtraTrees}$