A Characterization of Semi-Supervised Adversarially Robust

PAC Learnability

Ben-Gurion University

Joint work with:

Steve Hanneke

Purdue University

Idan Attias

Yishay Mansour

Tel Aviv University and Google Research

Adversarial Examples

 $+\,.007\,\times$

"panda"

57.7% confidence

Goodfellow, Shlens, Szegedy, ICLR '15

Semi-Supervised Robust Learning

noise

"gibbon"

99.3% confidence

Main Question

How many labeled and unlabeled samples are sufficient for learning a robust classifier in the PAC model?

Answer (informal):

The labeled sample size can be arbitrarily smaller than the unlabeled one, and controlled by a different complexity measure.

Semi-Supervised Robust Learning

Question:

Semi-Supervised Robust PAC Learning

- Unknown distribution *D* over $X \times \{0,1\}$.
- Perturbation function $U: X \to 2^X$.
- Robust error of classifier $h : X \to \{0,1\}$: $\operatorname{err}_{U}(h) = \mathbb{E}_{(x,y)\sim D} \left[\sup_{z \in U(x)} \mathbb{I}\{h(z) \neq y\} \right].$
- Semi-Supervised learning algorithm A^{ss}:

Input: $S^{l} = \{(x_{i}, y_{i})\}_{i=1}^{n} \text{ and } S^{u} = \{x_{j}\}_{j=n+1}^{m}, (x_{i}, y_{i}) \sim D, \text{ and } x_{j} \sim D_{X}.$

Output: $\hat{h}_{n,m-n}$.

Semi-Supervised Robust Learning

- Definition (semi-supervised learning): $H \subseteq \{0,1\}^X$ is robustly learnable in the realizable case, $\inf_{h \in H} \operatorname{err}_U(h) = 0$, if \exists algorithm A^{SS} , s.t. $\forall \epsilon, \delta, \forall D$, with probability $1 - \delta$, $\operatorname{err}_U(A^{SS}) \leq \epsilon$, using $M^l(\epsilon, \delta) < \infty$ labeled examples and $M^u(\epsilon, \delta) < \infty$ unlabeled examples.
- *M^l*(ε, δ) and *M^u*(ε, δ) are called the Sample Complexity.
- Agnostic case: $\operatorname{err}_U(A^{SS}) \leq \inf_{h \in H} \operatorname{err}_U(h) + \epsilon$.

Supervised Robust PAC Learning

 $H \subseteq \{0,1\}^X$ is robustly learnable in the realizable case, inf $\operatorname{err}_U(h) = 0$, if \exists algorithm A^S , s.t. $\forall \epsilon, \delta$, h∈H $\forall D$, with probability $1 - \delta$, $\operatorname{err}_U(A^S) \leq \epsilon$, using $\Lambda^S(\epsilon, \delta) < \infty$ labeled examples.

• Montasser, Hanneke, Srebro (COLT '19):

$$\frac{RS_U(H)}{\epsilon} + \frac{\log 1/\delta}{\epsilon} \lesssim \Lambda^S(\epsilon, \delta) \lesssim \frac{VC(H)VC^*(H)}{\epsilon} + \frac{\log 1/\delta}{\epsilon}$$

- $VC^*(H) \leq 2^{VC(H)}$.
- $\exists H, \text{ s.t. } RS_U(H) \ll VC(H).$

Semi-Supervised Robust Learning

Definition (supervised learning):

Main Result

Realizable:

$$M^{l}(\epsilon, \delta) \lesssim \frac{VC_{U}(H)}{\epsilon} + \frac{\log 1/\delta}{\epsilon}.$$

- perturbation set $U(x_1), \ldots, U(x_1)$ are realized by a function in *H*.
- $\exists H, \text{ s.t. } VC_{II}(H) \ll RS_{II}(H) \rightarrow M^{l}(\epsilon, \delta) \ll \Lambda^{S}(\epsilon, \delta).$

• Agnostic: Improved labeled sample complexity with error $3OPT(H) + \epsilon$.

Impossible to improve for OPT(H) + ϵ .

Semi-Supervised Robust Learning

• VC_U dimension d is the largest number s.t. $\exists x_1, \ldots, x_d$ and all 2^d classifications of the entire

 $M^{u}(\epsilon, \delta) \leq \Lambda^{S}(\epsilon, \delta) =$ sample size required for fully supervised learning.

Summary

Sample complexity for semi-supervised adversarially-robust learning

Semi-Supervised Robust Learning

Algorithmic Idea

Generic semi-supervised learner:

Preprocess step: keep only functions in *H* that are robustly self-consistent.
Learn the new class with the o-1 loss.
Use the output of step 2 to label an unlabeled sample.
Execute a fully-supervised robust learner.

Semi-Supervised Robust Learning

