

立志成才报图裕

Unified Optimal Transport Framework for Universal Domain Adaptation

Wanxing Chang¹

Ye Shi¹ Hoang D

Hoang Duong Tuan² Jingya Wang¹

¹ShanghaiTech University

²University of Technology Sydney

NeurIPS 2022

October 21, 2022

Page: https://changwxx.github.io/UniOT-webpage/

What is Universal Domain Adaptation?

Conventional DA

What is Universal Domain Adaptation?

Conventional DA

Source domain Target domain (?) Universal Target Domain

Universal DA (UniDA)

What is Universal Domain Adaptation?

Target domain
(?) Universal Target Domain

Universal DA (UniDA)

ignore the intrinsic structure of target domain

deteriorate target representation and model performance

learn a not well-generalized model to target domain

Existing Methods

diverse ratios of common categories

very sensitive to threshold values

Optimal Transport (OT)

Common Class Detection & Private Class Discovery

Optimal Transport (OT)

Common Class Detection

& Private Class Discovery

distribution transportation problems

Optimal Transport (OT)

OT is a promising optimization problem to seek an efficient solution for transporting one distribution to another.

Unified OT Framework for UniDA

Inter-domain Partial Alignment for Common Class Detection

Target sample confidence score based on UOT couplings

$$w_i^t = \max(\{\bar{\mathbf{Q}}_{i,1}^{st}, \bar{\mathbf{Q}}_{i,2}^{st}, \cdots, \bar{\mathbf{Q}}_{i,|\mathcal{C}_s|}^{st}\})$$

$$w_j^s = \sum_{i=1}^B \bar{\mathbf{Q}}_{i,j}^{st}$$

Top confident target samples detected by statistics mean

$$\delta_i = \begin{cases} 1, & w_i^t \ge \frac{1}{B} \text{ and } w_{\hat{y}_i^t}^s \ge \frac{1}{|\mathcal{C}_s|} \\ 0, & \text{otherwise} \end{cases}$$

$$\mathcal{L}_{CCD} = \frac{\sum_{i=1}^{B} \delta_i \cdot \mathcal{L}_{CE}(\mathbf{z}_i^t, \hat{y}_i^t)}{\sum_{i=1}^{B} \delta_i}$$

Adaptive filling for unbalanced proportion of positive and negative

to deal with diverse ratios of common categories

- **Negative filling**: synthesize fake private feature by mixing up target feature and its farthest source prototypes evenly
- **Positive filling**: reuse filtered confident features obtained by unfilled CCD

Intra-domain Representation Learning for Private Class Discovery

立志成才报图裕

global discrimination of clusters

$$\mathcal{L}_{global} = \frac{1}{B} \sum_{i=1}^{B} \ell(\tilde{\mathbf{q}}_{i}^{tt}, \mathbf{z}_{i}^{t})$$

local consistency of samples

$$\mathcal{L}_{local} = \frac{1}{2B} \sum_{i=1}^{B} \left[\ell(\tilde{\mathbf{q}}_{i}^{tt}, \mathbf{z}_{i}^{t}) + \ell(\tilde{\mathbf{q}}_{i}^{tt}, \tilde{\mathbf{z}}_{i}^{t}) \right]$$

$$\mathcal{L}_{PCD} = \frac{1}{2} (\mathcal{L}_{global} + \mathcal{L}_{local})$$

Experimental Settings

上海科技大学 ShanghaiTech University

立志成才报图

- A new evaluation metric H³-score:
 - accuracy on common class
 - accuracy on unknown class
 - Normalized Mutual Information (NMI) for target-private clusters

$$H^{3}-\text{score} = \frac{3}{\frac{1}{a_{c}} + \frac{1}{a_{\overline{c}}} + \frac{1}{NMI}}$$

立志成才报图裕

H-score(%) on **Office** and **DomainNet**.

				Office				DomainNet									
	A2D	A2W	D2A	D2W	W2A	W2D	Avg	P2R	R2P	P2S	S2P	R2S	S2R	Avg			
ResNet 21	49.78	47.92	48.48	54.94	48.96	55.60	50.94	30.06	28.34	26.95	26.95	26.89	29.74	28.15			
DANN 19	50.18	48.82	47.69	52.73	49.33	54.87	50.60	31.18	29.33	27.84	27.84	27.77	30.84	29.13			
RTN 26	50.18	50.21	47.65	54.68	49.28	55.24	51.21	32.27	30.29	28.71	28.71	28.63	31.90	30.08			
IWAN 41	50.64	50.13	49.65	54.06	49.79	55.44	51.62	35.38	33.02	31.15	31.15	31.06	34.94	32.78			
PADA 5	50.00	49.65	42.87	52.62	49.17	55.60	49.98	28.92	27.32	26.03	26.03	25.97	28.62	27.15			
ATI 3	50.48	48.58	48.48	55.01	48.98	55.45	51.16	32.59	30.57	28.96	28.96	28.89	32.21	30.36			
OSBP 34	51.14	50.23	49.75	55.53	50.16	57.20	52.34	33.60	33.03	30.55	30.53	30.61	33.65	32.00			
UAN 40	59.68	58.61	60.11	70.62	60.34	71.42	63.46	41.85	43.59	39.06	38.95	38.73	43.69	40.98			
CMU ¹⁸	68.11	67.33	71.42	79.32	72.23	80.42	73.14	50.78	52.16	45.12	44.82	45.64	50.97	48.25			
DANCE ^{‡33}	72.64	62.43	63.27	76.29	57.37	82.79	66.62	-	-	-	-	-	-	-			
DCC ²⁴	88.50	78.54	70.18	79.29	75.87	88.58	80.16	56.90	50.25	43.66	44.92	43.31	56.15	49.20			
TNT 9	85.70	80.40	83.80	92.00	79.10	91.20	85.37	-	-	-	-	-	-	-			
UniOT	86.97	88.48	88.35	98.83	87.60	96.57	91.13	59.30	47.79	51.79	46.81	48.32	58.25	52.04			
+6%!													+3%				

H³-score(%) on **Office** and **Office-Home**.

	Office									Office-Home											
	A2D	A2W	D2A	D2W	W2A	W2D	Avg	Ar2Cl	Ar2Pr	Ar2Rw	Cl2Ar	Cl2Pr	Cl2Rw	Pr2Ar	Pr2Cl	Pr2Rw	Rw2Ar	Rw2Cl	Rw2Pr	Avg	
ResNet 21	53.90	51.79	46.81	59.15	46.54	61.32	53.25	41.42	50.88	49.56	43.55	46.98	46.62	45.65	40.38	50.08	46.57	41.70	50.84	46.18	
UAN 40	66.15	64.20	57.90	72.63	57.93	75.73	65.76	48.86	57.19	58.35	58.80	61.42	62.80	51.67	46.11	63.24	60.69	49.40	67.62	57.18	
DANCE 33	73.19	68.53	67.88	81.09	65.61	85.70	73.67	40.92	40.95	45.84	29.73	20.26	36.97	52.63	48.23	50.13	22.78	44.89	58.29	40.97	
DCC 24	84.47	74.80	63.54	87.09	69.58	71.55	75.17	55.64	78.21	78.18	44.64	33.77	69.96	63.77	53.81	65.10	63.17	53.58	80.09	61.66	
UniOT	83.69	85.28	71.46	91.24	70.93	90.84	82.24	60.11	78.72	79.53	65.83	75.32	76.83	68.21	56.83	80.55	69.62	58.74	79.84	70.84	

Common		n	Priv	vate															
Class Discovery			Cla	ISS	H-score							H ³ -score							
		ry	Discovery		Office				Office-Home			Off	ice	Office-Home					
	\mathcal{L}_{CCD}	$\mathcal{L}_{CCD}^{\dagger}$	\mathcal{L}_{global}	\mathcal{L}_{local}	A2W	D2A	Avg (6 tasks)	Ar2Pr	Cl2Rw	Avg (12 tasks)	A2W	D2A	Avg (6 tasks)	Ar2Pr	Cl2Rw	Avg (12 tasks)			
	~				77.98	87.79	83.57	71.21	74.24	69.73	69.95	67.44	72.94	64.84	59.30	58.18			
	\checkmark			\checkmark	86.81	86.36	88.44	73.53	76.49	71.40	82.95	67.88	81.18	73.14	69.37	65.34			
	\checkmark		~		87.71	84.71	89.04	80.00	83.83	76.07	80.36	66.31	77.68	78.32	76.73	69.89			
	262	\frown	1	\checkmark	74.18	72.61	79.74	79.59	74.24	75.55	75.38	62.08	76.18	78.42	76.12	70.44			
		\checkmark	~	\checkmark	87.84	89.19	89.86	75.10	79.14	72.65	81.25	70.75	80.49	75.28	74.02	68.31			
	\checkmark		~	~	88.48	88.35	91.13	80.54	84.28	76.57	85.28	71.46	82.24	78.72	76.83	70.84			

w/o adaptive filling Table 4: Evaluation of the effectiveness of the proposed CCD and PCD.

Robustness in realistic UniDA

Ratio of common/source-private/target-private

Ratio of common/source-private/target-private

Feature visualization of target domain

立志成才报图裕氏

✓ global discrimination of clusters

✓ local consistency of samples

Conclusion

We have proposed to use Optimal Transport to handle common class detection and private class discovery for UniDA under a unified framework, namely UniOT.

- ✓ Unified OT framework
- ✓ robust for realistic UniDA, without tuning threshold parameter
- ✓ recognize different categories among target-private samples, learn better target representation

scan QR code for more details

