

Meta-Learning with Self-Improving Momentum Target

Jihoon Tack¹, Jongjin Park¹, Hankook Lee¹, Jaeho Lee², Jinwoo Shin¹

Korea Advanced Institute of Science and Technology (KAIST)¹ Pohang University of Science and Technology (POSTECH)²

What is meta-learning?

What is meta-learning?

What is meta-learning?

What is meta-learning?

Meta-Learning with Target Models

Recently an alternative paradigm has gained much attention [1,2]

• Use a task-specific target model, i.e., an expert or teacher, to evaluate the performance

[1] Towards enabling meta-learning from target models, Lu et al., NeurIPS 2021 [2] Bootstrapped Meta-Learning, Flennerhag et al., ICLR 2022

An Obstacle

An Obstacle

Q. How can we train target models for **every task**...?

• This suffers from both **computation** and **storage** burden !

Q. How can we train target models for **every task**...?

• This suffers from both computation and storage burden !

A. How about generating target models from a better meta-learner...?

Better meta-model

- This suffers from both computation and storage burden !
- **A.** How about **generating target models** from a **better meta-learner**...?

- This suffers from both computation and storage burden !
- **A.** How about **generating target models** from a **better meta-learner**...?

- This suffers from both computation and storage burden !
- **A.** How about **generating target models** from a **better meta-learner**...?

Utilize Momentum Network !

We draw inspiration from recent observations in **semi/self-supervised learning literature** [3,4]

• The **momentum network** can be an effective teacher of the original model

Utilize Momentum Network !

We draw inspiration from recent observations in **semi/self-supervised learning literature** [3,4]

• The **momentum network** can be an effective teacher of the original model

A similar phenomenon happens in meta-learning !

Momentum network of the meta-model shows an effective adaptation performance

 $\theta_{\texttt{moment}} \leftarrow \eta \cdot \theta_{\texttt{moment}} + (1 - \eta) \cdot \theta$

[3] Temporal ensembling for semi-supervised learning, Laine et al., ICLR 2017[4] Emerging properties in self-supervised vision transformers, Caron et al., ICCV 2021

We propose **SiMT**, a simple yet effective framework for meta-learning

We propose **SiMT**, a simple yet effective framework for meta-learning

• Momentum target: Generating the target model from the momentum network to teach the original model

We propose **SiMT**, a simple yet effective framework for meta-learning

- Momentum target: Generating the target model from the momentum network to teach the original model
- **Self-improving process**: Improving the meta-model recursively improves the momentum network

We propose **SiMT**, a simple yet effective framework for meta-learning

- Momentum target: Generating the target model from the momentum network to teach the original model
- Self-improving process: Improving the meta-model recursively improves the momentum network

Experiments: Few-shot Learning

We verify the effectiveness of SiMT in various

few-shot learning and meta-reinforcement learning scenarios

SiMT **consistently and significantly improves** the backbone meta-learning algorithms

		mini-In	nageNet	tiered-ImageNet				mini-ImageNet \rightarrow		tiered-ImageNet \rightarrow	
Model	Method	1-shot	5-shot	1-shot	5-shot	Problem	Method	CUB	Cars	CUB	Cars
Conv4 [55]	MAML [10] MAML [10] + SiMT	$\begin{array}{c} 47.33 {\pm} 0.45 \\ \textbf{51.49} {\pm} \textbf{0.18} \end{array}$	63.27±0.14 68.74±0.12	$50.19{\scriptstyle\pm 0.21} \\ 52.51{\scriptstyle\pm 0.21}$	$\begin{array}{c} 66.05{\pm}0.19\\ \textbf{69.58}{\pm}\textbf{0.11}\end{array}$	1-shot	MAML [10] MAML [10] + SiMT	$\begin{array}{c} 39.50 {\pm} 0.91 \\ \textbf{42.32} {\pm} \textbf{0.62} \end{array}$	32.87±0.20 33.73±0.63	$\begin{array}{c} 42.32{\pm}0.69\\ \textbf{44.33}{\pm}\textbf{0.43}\end{array}$	36.62±0.12 37.21±0.35
	ANIL [36] ANIL [36] + SiMT	47.71±0.47 50.81 ± 0.56	63.13±0.43 67.99±0.19	49.57±0.04 51.66±0.26	$\begin{array}{c} 66.34{\pm}0.28\\ \textbf{68.88}{\pm}\textbf{0.08}\end{array}$		ANIL [36] ANIL [36] + SiMT	37.30±0.89 38.86±0.98	31.28±1.03 32.34±0.95	$\begin{array}{c} 42.29 {\pm} 0.33 \\ \textbf{44.53} {\pm} \textbf{1.21} \end{array}$	36.27±0.58 36.92±0.56
	MetaSGD [31] MetaSGD [31] + SiMT	50.66±0.18 51.70±0.80	65.55±0.54 69.13±1.40	52.48±1.22 52.98±0.07	71.06±0.20 71.46±0.12		MetaSGD [31] MetaSGD [31] + SiMT	41.98±0.18 43.50±0.89	34.52±0.56 33.92±0.30	46.48±2.10 46.62±0.41	38.09±1.21 38.69±0.26
	ProtoNet [45] ProtoNet [45] + SiMT	$\begin{array}{c} 47.97 {\pm} 0.29 \\ \textbf{51.25} {\pm} \textbf{0.55} \end{array}$	65.16±0.67 68.71±0.35	51.90±0.55 53.25±0.27	71.51±0.25 72.69±0.27		ProtoNet [45] ProtoNet [45] + SiMT	$\begin{array}{c} 41.22{\pm}0.81\\ \textbf{44.13}{\pm}\textbf{0.30} \end{array}$	32.79±0.61 34.53±0.40	$\begin{array}{c} 47.75 {\pm} 0.56 \\ \textbf{48.89} {\pm} \textbf{0.65} \end{array}$	37.59±0.80 38.07±0.42
ResNet-12 [34]	MAML [10] MAML [10] + SiMT	$52.66{\scriptstyle\pm 0.60} \\ \textbf{56.28}{\scriptstyle\pm 0.63} \\$	68.69±0.33 72.01±0.26	57.32±0.59 59.72 ±0.22	73.78±0.27 74.40±0.90	5-shot	MAML [10] MAML [10] + SiMT	56.17±0.92 59.22±0.39	44.56±0.79 46.59 ± 0.21	65.00±0.89 67.58±0.61	51.08±0.28 51.88±0.52
	ANIL [36] ANIL [36] + SiMT	51.80±0.59 54.44 ± 0.27	68.38±0.20 69.98±0.66	57.52±0.68 58.18±0.31	$73.50{\pm}0.35 \\ \textbf{75.59}{\pm}\textbf{0.50}$		ANIL [36] ANIL [36] + SiMT	$53.42{\pm}0.97\\56.03{\pm}1.40$	41.65±0.67 45.88 ± 0.82	$\begin{array}{c} 62.48 {\pm} 0.85 \\ \textbf{66.30} {\pm} \textbf{0.99} \end{array}$	50.50±1.18 54.60±0.91
	MetaSGD [31] MetaSGD [31] + SiMT	54.95±0.11 55.72±0.96	70.65±0.43 74.01±0.79	58.97±0.89 61.03±0.05	$76.37{\pm}0.11\\78.04{\pm}0.48$		MetaSGD [31] MetaSGD [31] + SiMT	58.90±1.30 65.07±1.89	47.44±1.55 49.86 ± 0.84	$70.38{\scriptstyle\pm0.27} \\ \textbf{73.93}{\scriptstyle\pm0.42}$	56.28±0.07 57.97±1.34
	ProtoNet [45] ProtoNet [45] + SiMT	$52.84{\pm}0.21\\55.84{\pm}0.57$	68.35±0.29 72.45±0.32	61.16±0.17 62.01±0.42	$79.94{\scriptstyle\pm0.20}\\\textbf{81.82}{\scriptstyle\pm0.12}$		ProtoNet [45] ProtoNet [45] + SiMT	57.87±0.77 63.85±0.76	48.06±1.10 51.67±0.29	74.35±0.93 75.97 ± 0.09	57.23±0.25 59.01±0.50

In-domain adaptation accuracy (%)

Cross-domain adaptation accuracy (%)

Experiments: Comparison with Other Target Models

We also compare SiMT with **other target models**

• (i) Bootstrapped target model [2] and (ii) Pre-trained target model [1]

	mini-In	nageNet	tiered-ImageNet		
Method	1-shot	5-shot	1-shot	5-shot	
MAML [10] MAML [10] + Bootstrap [16] MAML [10] + SiMT	$\begin{array}{c} 47.33 {\pm} 0.45 \\ 48.68 {\pm} 0.33 \\ \textbf{51.49} {\pm} \textbf{0.18} \end{array}$	$\begin{array}{c} 63.27{\pm}0.14\\ 68.45{\pm}0.40\\ \textbf{68.74{\pm}0.12}\end{array}$	$\begin{array}{c} 50.19{\pm}0.21\\ 49.34{\pm}0.26\\ \textbf{52.51}{\pm}\textbf{0.21}\end{array}$	$\begin{array}{c} 66.05{\pm}0.19\\ 68.84{\pm}0.37\\ \textbf{69.58{\pm}0.11} \end{array}$	
ANIL [36] ANIL [36] + Bootstrap [16] ANIL [36] + SiMT	$\begin{array}{c} 47.71 {\pm} 0.47 \\ 47.74 {\pm} 0.44 \\ \textbf{50.81} {\pm} \textbf{0.56} \end{array}$	$\begin{array}{c} 63.13 {\pm} 0.43 \\ 65.16 {\pm} 0.04 \\ \textbf{67.99} {\pm} \textbf{0.19} \end{array}$	$\begin{array}{c} 49.57{\pm}0.04\\ 48.85{\pm}0.34\\ \textbf{51.66{\pm}0.26}\end{array}$	$\begin{array}{c} 66.34{\pm}0.28\\ 66.09{\pm}0.07\\ \textbf{68.88{\pm}0.08} \end{array}$	

(i) Comparison with the Bootstrapped target model [2]

	1-shot train cost	mini-In	nageNet	tiered-ImageNet		
Method	(GPU hours)	1-shot	5-shot	1-shot	5-shot	
MAML [10]*	1.31	$58.84 {\pm} 0.25$	$74.62{\pm}0.38$	$63.02 {\pm} 0.30$	$67.26{\scriptstyle\pm0.32}$	
MAML [10] + Lu et al. [32] - 5%*	5.04	59.14 ± 0.33	$75.77 {\pm} 0.29$	$64.52 {\pm} 0.30$	$68.39{\pm}0.34$	
MAML [10] + Lu et al. [32] - 10%*	8.32	$60.06 {\pm} 0.35$	$76.34{\scriptstyle\pm0.42}$	65.23 ±0.45	$70.02{\pm}0.33$	
MAML [10] + SiMT	1.64	62.05±0.39	78.77 ±0.45	$63.91{\scriptstyle\pm0.32}$	77.43 ±0.47	

(ii) Comparison with the Pre-trained target model [1]

[1] Towards enabling meta-learning from target models, Lu et al., NeurIPS 2021

[2] Bootstrapped Meta-Learning, Flennerhag et al., ICLR 2022

Thank you for your attention ©

For any more questions, please send us an email!

Email: jihoontack@kaist.ac.kr Paper: <u>https://arxiv.org/abs/2210.05185</u> Code: <u>https://github.com/jihoontack/SiMT</u>