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Introduction

Learning from populations of Neural Network models is an emerging topic. 

Discriminative: predict model properties

• Predict: accuracy, generalization gap, hyperparameters

• Features: weights [Unterthiner et al., 2020; Martin et al., 2021], 

activations [Jiang et al., 2019], graph-metrics [Corneanu et al., 2020]

Generative: generate new models

• HyperNetworks [Ha et al.. 2016;  Deutsch, 2018; Zhang et al., 2020; Knyazev 

et al., 2021; Zhmoginov et al., 2022;  Ratzlaff and Fuxin, 2019.]

• Transfer Learning, Knowledge Distillation [Shu et al., 2021; Liu et al., 

2019.]

Hyper-Representations: SSL representations of NN 

weights [Schürholt et al., NeurIPS 2021]
Model Zoos: Dataset of Diverse NN populations 

[Schürholt et al., NeurIPS 2022]

This work: Generative Hyper-Representations
Goal:
• Better initializations for fine-tuning and transfer-learning
• Knowledge distillation from populations
• Generate diverse ensembles
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Approach
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Zoo Generation Details 
• Small CNNs: 3 conv, 2 FC layers
• ~2500 parameters
• 1000 models, trained for 25 epochs
• Initialized with different random seeds

Hyper-Representation Details 
• Encoder-Decoder Transformer
• Trained with Reconstruction and Contrast

Sampling Details 
• Properties like accuracy are embedded in latent
• Problem: space is relatively high-dimensional
• We propose 3 methods to sample good models

Evaluation Details 
• Use sampled models as initialization:

• finetuning in-distribution
• transfer learning
• generating diverse ensembles
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Sampling initializations

Sampling methods are targeted: 
distinguish high / low accuracy

Sampled populations are better than (or 
comparable to) baselines:

• As initialization 
• In finetuning (often after 1 ep better than 25 ep 

trained from scratch)



Sampled populations outperform or match baselines for transfer-learning

Sampled weights generalize to changed architectures and outperform random initialization
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Sampling for New Tasks and Architectures
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