

Uncovering the Structural Fairness in Graph Contrastive Learning

Ruijia Wang¹, Xiao Wang¹, Chuan Shi¹, Le Song² ¹Beijing University of Posts and Telecommunications ²BioMap and MBZUAI

CONTENTS

01 Background

02 Investigation and Analysis

03 GRADE: The Proposed Model

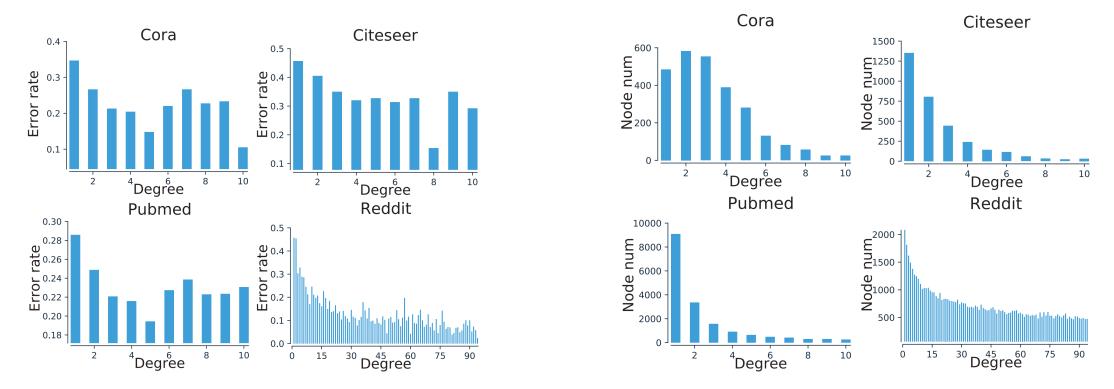
Investigation and Analysis GRADE Experiments

Conclusion

Background

Graph Convolutional Network (GCN^[1])

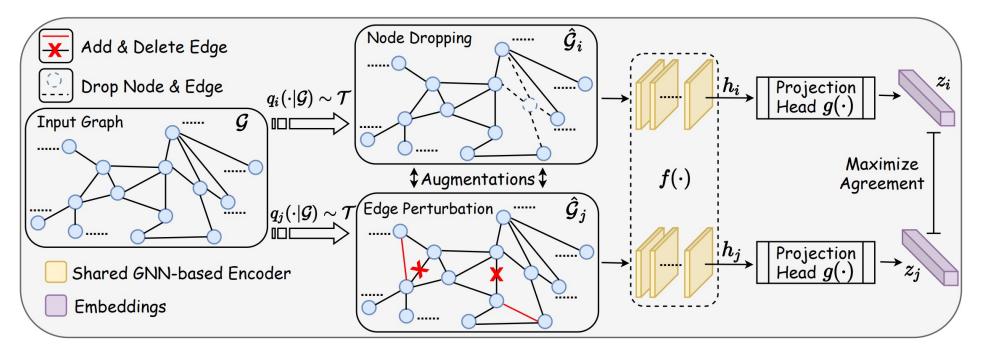
• Node degrees of real-world graphs often follow a **long-tailed distribution**.



GCN exhibits a structural unfairness.

[1] T. N. Kipf, and M. Welling. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017.

Graph Contrastive Learning (GCL)



- GCL integrates the power of GCN and contrastive learning.
- GCL relieves GCN from annotations, and displays SOTA performance in many tasks.

Will GCL present the same structure unfairness as GCN?

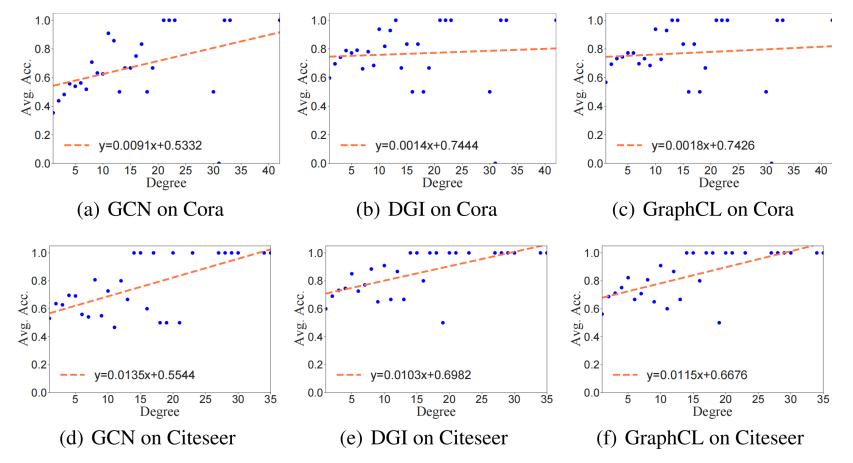
Background Investigation and Analysis

GRADE Experiments

Conclusion

Investigation and Analysis

Exploring the Behavior of Graph Contrastive Learning on Degree Bias



• A smaller performance gap exists in GCL methods than that of GCN.

Why is graph contrastive learning fairer to degree bias?

C Analysis on the Structural Fairness of Graph Contrastive Learning

Preliminary Notations

- Let $G = (\mathcal{V}, \mathcal{E}, X)$ be a graph, $X = [x_1, x_2, \cdots, x_N] \in \mathbb{R}^{N \times B}$ is node feature matrix.
- The edges can be represented by an adjacency matrix $A \in \{0,1\}^{N \times N}$.
- Assume the augmentation set ${\mathcal T}$ consisting of all transformations on topology.
- Positive samples generated from ego network \mathcal{G}_i of node v_i denoted as $\mathcal{T}(\mathcal{G}_i)$.
- Here we focus on topological augmentation and single-layer GCN $f(\mathcal{G}_i) = ReLU(\tilde{L}_i XW)$ $\tilde{L} = \tilde{D}^{-1}\tilde{A}, \tilde{A} = A + I, \tilde{D}_{ii} = \sum_i \tilde{A}_{ij}$
- We consider a **community indicator** F_f

$$F_f(\mathcal{G}_i) = \underset{k \in [K]}{\operatorname{arg\,min}} \|f(\mathcal{G}_i) - \mu_k\| \quad \mu_k = \mathbb{E}_{v_i \in C_k} \mathbb{E}_{\hat{\mathcal{G}}_i \in \mathcal{T}(\mathcal{G}_i)} [f(\hat{\mathcal{G}}_i)]$$

• The error of community indicator can be formulated as

$$\operatorname{Err}(F_f) = \sum_{k=1}^{K} \mathbb{P}[F_f(\mathcal{G}_i) \neq k, \forall v_i \in C_k]$$

• we denote $S_{\varepsilon} = \{v_i \in \bigcup_{k=1}^{K} C_k : \forall \hat{\mathcal{G}}_i^1, \hat{\mathcal{G}}_i^2 \in \mathcal{T}(\mathcal{G}_i), \|f(\hat{\mathcal{G}}_i^1) - f(\hat{\mathcal{G}}_i^2)\| \leq \varepsilon\}$ as nodes with ε -close representations among graph augmentations.

Analysis on the Structural Fairness of Graph Contrastive Learning Theoretical Analysis

• Assume the nonlinear transformation has M-Lipschitz continuity

 $\|f(\mathcal{G}_i) - f(\mathcal{G}_j)\| = \|ReLU(\tilde{L}_iXW) - ReLU(\tilde{L}_jXW)\| \le M \|\tilde{L}_iX - \tilde{L}_jX\|$

- Graph augmentations are **uniformly sampled** with m augmented edges $\mathbb{P}[\hat{G}_i = \mathcal{T}(G_i)] = 1/C(N-1,m)$
- Let there be a ball of radius βm such that for any augmentation $\|\tilde{L}_i X \hat{L}_i X\|^2 \leq \beta m$

Theorem 1 Intra-community Concentration. Let pre-transformation representations $\tilde{L}X$ be sub-Gaussian random variable with variance σ^2 . For all nodes $v_i \in S_{\varepsilon}$, if $\varepsilon^2 \leq \frac{\beta m}{6M^2\kappa}$, their representations $f(\mathcal{G}_i)$ fit sub-Gaussian distribution with variance $\sigma_{f,\varepsilon}^2 \leq \frac{1}{\kappa}\sigma^2$ with $\kappa \geq 1$ where κ is a coefficient that reflects the degree of concentration.

Relation between the intra-community concentration and the alignment of positive pairs

C Analysis on the Structural Fairness of Graph Contrastive Learning

D Theoretical Analysis

 Define the augmentation distance between nodes as the minimum distance between their pre-transformation representations

$$d_{\mathcal{T}}(v_i, v_j) = \min_{\hat{\mathcal{G}}_i \in \mathcal{T}(\mathcal{G}_i), \hat{\mathcal{G}}_j \in \mathcal{T}(\mathcal{G}_j)} \| \hat{L}_i X - \hat{L}_j X \| = \min_{\hat{\mathcal{G}}_i \in \mathcal{T}(\mathcal{G}_i), \hat{\mathcal{G}}_j \in \mathcal{T}(\mathcal{G}_j)} \| (\frac{A_i}{\hat{d}_i} - \frac{A_j}{\hat{d}_j}) X \|$$

• Introduce the definition of (α, γ, d) -augmentation to measure the concentration of pre-transformation representations

Definition 1 $(\alpha, \gamma, \hat{d})$ -Augmentation. The augmentation set \mathcal{T} is a $(\alpha, \gamma, \hat{d})$ -augmentation, if for each community C_k , there exists a subset $C_k^0 \subset C_k$ such that the following two conditions hold

1.
$$\mathbb{P}[v_i \in C_k^0] \ge \alpha \mathbb{P}[v_i \in C_k]$$
 where $\alpha \in (0, 1]$,

2.
$$\sup_{v_i, v_j \in C_k^0} d_{\mathcal{T}}(v_i, v_j) \leq \gamma(\frac{B}{\hat{d}_{\min}^k})^{\frac{1}{2}}$$
 where $\gamma \in (0, 1]$,

where $\hat{d}_{\min}^k = \min_{v_i \in C_k^0, \hat{\mathcal{G}}_i \in \mathcal{T}(\mathcal{G}_i)} \hat{d}_i$, and B is the feature dimension.

Analysis on the Structural Fairness of Graph Contrastive Learning

- **Theoretical Analysis**
 - Assume that the representation is **normalized** by $||f(\mathcal{G}_i)|| = r$ and let $p_k = \mathbb{P}[v_i \in C_k]$
 - Bound the inter-community distance and the error of the community indicator

Theorem 2 Inter-community Scatter. For $a(\alpha, \gamma, \hat{d})$ -augmentation, if $\mu_{\ell}^{\top} \mu_k < r^2(1 - \rho_{\max}(\alpha, \gamma, \hat{d}, \varepsilon) - \sqrt{2\rho_{\max}(\alpha, \gamma, \hat{d}, \varepsilon)} - \frac{\Delta_{\mu}}{2})$ (5) holds for any pair of (ℓ, k) with $\ell \neq k$, then the error of the community indicator F_f can be bounded by $(1 - \alpha) + R_{\varepsilon}$, where $\rho_{\max}(\alpha, \gamma, \hat{d}, \varepsilon) = 2(1 - \alpha) + \max_{\ell} \left(\frac{2R_{\varepsilon}}{p_{\ell}} + \frac{M\alpha\gamma\sqrt{B}}{r\sqrt{d_{\min}^{\ell}}}\right) + \frac{2\alpha\varepsilon}{r})$ and $\Delta_{\mu} = 1 - \min_{k \in [K]} \|\mu_k\|^2 / r^2$. (2) concentration of representations

neorem 3 The term
$$R_{\varepsilon}$$
 is upper bounded by

$$R_{\varepsilon} \leq \frac{[C(N-1,m)]^{2}}{\varepsilon} \mathbb{E}_{v_{i}} \mathbb{E}_{\hat{\mathcal{G}}_{i}^{1}, \hat{\mathcal{G}}_{i}^{2} \in \mathcal{T}(\mathcal{G}_{i})} \|f(\hat{\mathcal{G}}_{i}^{1}) - f(\hat{\mathcal{G}}_{i}^{2})\|.$$
(6)

GCL conform to a clearer community structure

Background Investigation and Analysis

GRADE Experiments

Conclusion

The Proposed Model

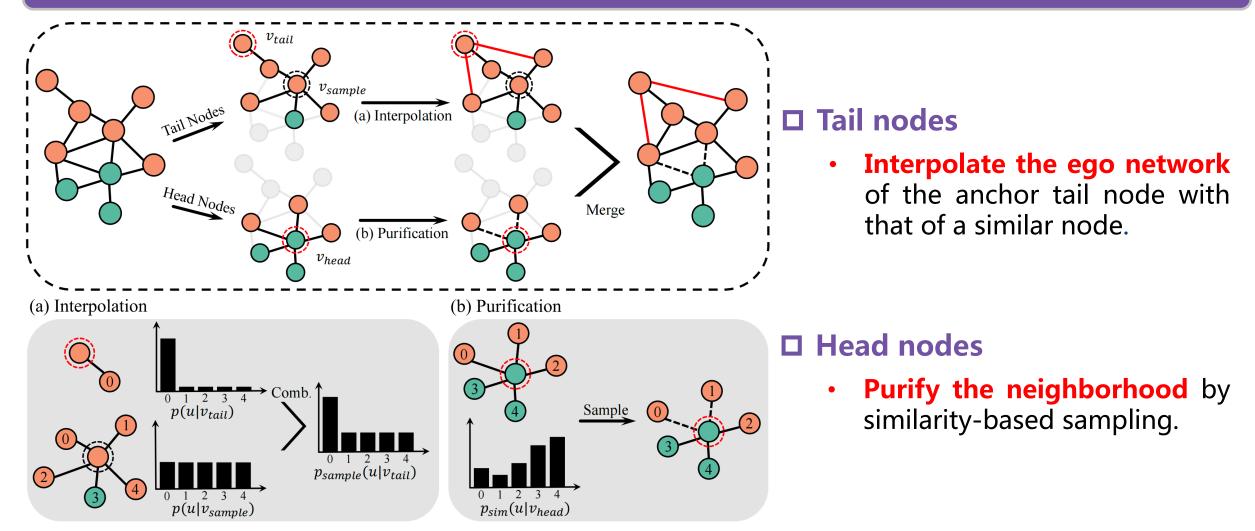
GRADE

Experiments

Conclusion

Overview

Aim to increase intra-community edges while decreasing inter-community edges



Graph Augmentation

D Topology Augmentation

• We build the similarity matrix S based on **cosine similarity** of representations

 $S_{ij} = sim(\mathbf{h}_i, \mathbf{h}_j)$ for $i \neq j$ and $S_{ii} = 0$ otherwise

• For any tail node v_{tail} , we sample a node v_{sample} from the distribution $Multi(s_{tail})$.

GRADE

Conclusion

Experiments

- The similarity $\sin(m{h}_{tail},m{h}_{sample})$ is used as the interpolation ratio ϕ

$$p_{sample}(u|v_{tail}) = \phi p(u|v_{tail}) + (1-\phi)p(u|v_{sample})$$

- For each head node v_{head} , we define the similarity distribution for purification $p_{sim}(u|v) = sim(h_u, h_v)$ if $u \in \mathcal{N}(v)$ and p(u|v) = 0
- We sample $d_{head}(1 p_{edr})$ neighbors without replacement.

□ Feature Augmentation

• We randomly sample a mask $m \in \{0,1\}^B$ from a Bernoulli distribution $Ber(1 - p_{fdr})$ $\hat{X} = [x_1 \circ m, x_2 \circ m, \cdots, x_N \circ m]$ **Background** Investigation and Analysis

D Optimization Objective

• Node representations h_i and o_i from different graph augmentations form the positive pair.

GRADE

 $\theta(\mathbf{h}_i, \mathbf{o}_i)/\tau$

Experiments

Conclusion

- Node representations of other nodes in graph augmentations are regarded as negative pairs.
- We define the pairwise objective for each positive pair^[1] (h_i, o_i) as

$$\ell(\boldsymbol{h}_i, \boldsymbol{o}_i) = \log \frac{e^{-(\boldsymbol{h}_i, \boldsymbol{o}_i)/\tau}}{e^{\theta(\boldsymbol{h}_i, \boldsymbol{o}_i)/\tau} + \sum_{k \neq i} e^{\theta(\boldsymbol{h}_i, \boldsymbol{o}_k)/\tau} + \sum_{k \neq i} e^{\theta(\boldsymbol{h}_i, \boldsymbol{h}_k)/\tau}}$$

where τ is a temperature parameter, and the critic $\theta(h, o)$ is defined a sim(g(h), g(o)).

• The overall objective to be maximized is the average of all positive pairs

$$\mathcal{J} = \frac{1}{2N} \sum_{i=1}^{N} \left[\ell(\boldsymbol{h}_i, \boldsymbol{o}_i) + \ell(\boldsymbol{o}_i, \boldsymbol{h}_i) \right]$$

[1] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep Graph Contrastive Representation Learning. In ICML Workshop.

Background Investigation and Analysis

GRADE Experiments

Conclusion

Experiments

GRADE Ex

Node Classification

		Cora		Citeseer		Photo		Computer		1.0				
		Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	0.8 ی ی				
ised Split	GCN	$82.30{\scriptstyle \pm 0.49}$	$76.87{\scriptstyle\pm0.34}$	$65.84{\scriptstyle \pm 0.55}$	$59.62{\scriptstyle \pm 0.64}$	$93.52{\scriptstyle\pm0.82}$	78.88±2.01	$89.14{\scriptstyle \pm 0.75}$	$72.61{\scriptstyle\pm3.05}$	A 0.6 ₿v				
	DGI	82.28 ± 0.84	77.23 ± 0.90	65.64 ± 0.63	59.47 ± 1.24	92.98 ± 1.12	78.83 ± 1.66	$88.96{\scriptstyle\pm0.96}$	$7\overline{2}.\overline{30}_{\pm 1.80}$	0.4 0.2				
	GraphCL	$81.78{\scriptstyle\pm0.67}$	$76.01{\scriptstyle \pm 1.07}$	$65.16{\scriptstyle\pm1.02}$	$58.72{\scriptstyle\pm1.37}$	<u> </u>			—					
	GRACE	$82.32{\scriptstyle\pm0.45}$	$76.78{\scriptstyle \pm 0.87}$	$64.16{\scriptstyle \pm 2.07}$	$59.73{\scriptstyle\pm1.94}$	$93.12{\scriptstyle\pm0.40}$	$78.60{\scriptstyle \pm 3.12}$	$88.22{\scriptstyle\pm1.04}$	$71.74{\scriptstyle \pm 3.05}$		GĊN	MVGRI	CCA-55G	G GRADE
erv	MVGRL	$83.22{\scriptstyle\pm1.02}$	$77.84{\scriptstyle\pm1.35}$	$66.26{\scriptstyle \pm 0.72}$	$60.30{\scriptstyle \pm 0.95}$	$94.10{\scriptstyle \pm 0.31}$	$78.36{\scriptstyle\pm2.22}$		—					
Supe	CCA-SSG	$82.70{\scriptstyle\pm0.86}$	$77.35{\scriptstyle\pm1.06}$	$65.96{\scriptstyle\pm1.36}$	$58.81{\scriptstyle\pm1.67}$	$94.36{\scriptstyle \pm 0.25}$	$79.34{\scriptstyle\pm3.42}$	$89.22{\scriptstyle\pm0.95}$	$73.82{\scriptstyle\pm1.80}$		(a)	Tail	nodes	
	GRADE	$\textbf{83.40}{\scriptstyle \pm 0.80}$	78.54±1.15	67.14±1.07	61.04 ±2.07	$94.72{\scriptstyle\pm0.30}$	$78.86{\scriptstyle\pm2.77}$	$89.42{\scriptstyle\pm0.53}$	74.71 ±1.30	1.0				
Split	GCN	$74.18{\scriptstyle\pm0.40}$	$69.84{\scriptstyle\pm0.56}$	53.80 ± 0.94	50.15±0.69	$91.04{\scriptstyle\pm0.65}$	$65.47{\scriptstyle\pm1.20}$	$78.58{\scriptstyle\pm0.93}$	61.80±1.43	0.8				\checkmark
Sp	D GI – – –	$\overline{75.92}{\scriptstyle\pm0.86}$	70.04 ± 0.53	54.52 ± 1.44	51.92±1.23	$\bar{90.78}{\scriptstyle\pm0.78}$	$\overline{66.27}{\scriptstyle\pm0.76}$	$\overline{79.00}{\scriptstyle\pm0.80}$	62.00±1.70	.0.6 VCC			V	
sed	GraphCL	$75.68{\scriptstyle\pm2.84}$	$69.86{\scriptstyle\pm2.41}$	$54.06{\scriptstyle\pm1.93}$	$51.75{\scriptstyle\pm1.78}$				—	NA 0.4				
rviso	GRACE	$75.12{\scriptstyle\pm1.41}$	$69.66{\scriptstyle\pm1.29}$	$53.56{\scriptstyle\pm3.42}$	$49.83{\scriptstyle \pm 1.74}$	$91.12{\scriptstyle\pm0.31}$	$65.07{\scriptstyle\pm1.28}$	$79.10{\scriptstyle \pm 1.79}$	$61.76{\scriptstyle \pm 1.97}$	≪ 0.4	-			
Ipe	MVGRL	$76.44{\scriptstyle\pm1.17}$	$70.52{\scriptstyle\pm1.63}$	$56.84{\scriptstyle\pm1.26}$	$53.79{\scriptstyle\pm1.25}$	$92.01{\scriptstyle\pm0.87}$	$66.16{\scriptstyle \pm 2.13}$			0.2	-			
Semi-su	CCA-SSG	75.74±1.96	71.70±1.59	57.90±1.82	54.70±1.54	$91.68{\scriptstyle\pm0.50}$	67.08 ±1.08	82.20±0.47	65.04±1.16		GĊN	MVGRL	CCA-SSG	GRADE
	GRADE	77.20±0.94	73.37±1.27	59.44 ±0.78	$56.47{\scriptstyle\pm0.64}$	92.04±0.30	66.62 ± 2.27	82.50±1.04	67.50±1.80		(\mathbf{h})	Head	l node	25

GRADE outperforms all baselines in most cases regardless of tail nodes or head nodes.

T Fairness Analysis

- We define the **group mean** as the mean of degree-specific average accuracy
- The **bias** is the variance.

Avg. Acc. $(k) = \mathbb{E}[\{\operatorname{Acc}(v_i), \forall \text{ node } v_i \text{ such that } d_i = k\}],$

 $G.Mean = \mathbb{E}[\{\operatorname{Avg.Acc.}(k), \forall \text{ node degree } k\}], Bias = \operatorname{Var}(\{\operatorname{Avg.Acc.}(k), \forall \text{ node degree } k\})$

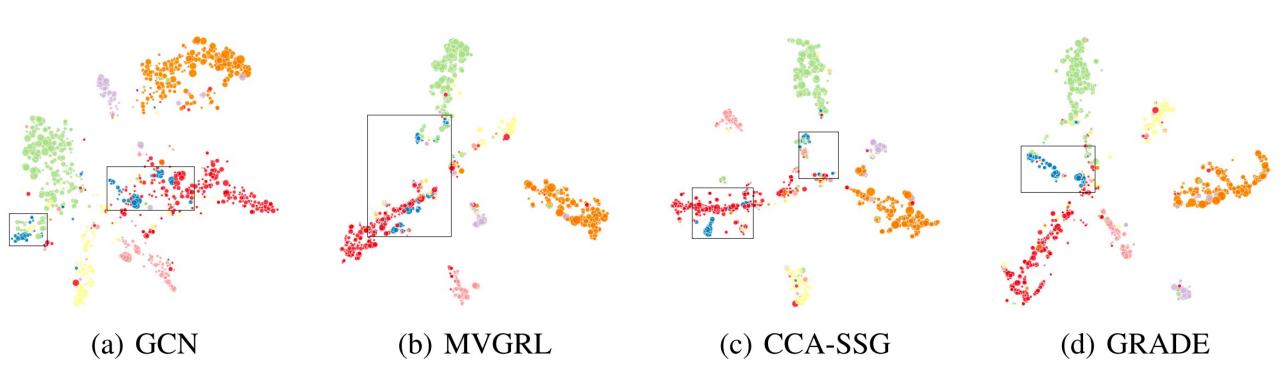
	Cora	ı	Citese	er	Phot	0	Computer		
	G. Mean↑	Bias↓	G. Mean↑	Bias↓	G. Mean↑	Bias↓	G. Mean↑	<i>Bias</i> ↓	
GCN	86.04	1.70	84.00	1.85	97.41	0.28	96.30	0.50	
DGI	89.26	0.67	84.79	1.71	98.23	0.27	96.94	0.45	
GraphCL	90.80	0.59	84.13	1.80					
GRACE	89.91	0.70	85.44	1.67	98.28	0.23	96.92	0.47	
MVGRL	91.01	0.54	83.86	1.83	98.39	0.27			
CCA-SSG	90.86	0.63	84.35	1.73	98.44	0.24	97.17	0.39	
GRADE	92.87	0.48	85.88	1.52	98.52	0.20	97.42	0.35	

GRADE reduces the bias across all datasets and maintain the highest group mean.

Experiments

Conclusion

Visualization



GRADE pulls same-community node representations more concentrated.

Conclusions

GRADE Experiments

Conclusion

• New insights for structural fairness

We are the first to discover that GCL methods exhibit more structural fairness than GCN. This discovery inspires a new path for alleviating structural unfairness based on contrastive learning.

Deeper understanding for graph contrastive learning

We theoretically validate the reason for structural fairness in GCL is that it stimulates intra-community concentration.

A novel framework

We propose a method GRADE to further improve the structural fairness by enriching the neighborhood of tail nodes while purifying neighbors of head nodes.

Thanks for listening!

E-mail: wangruijia@bupt.edu.cn code & data: <u>http://shichuan.org/</u>