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The Lasso
A type of penalized regression, represented by the following convex
optimization problem:

minimize
β∈Rp

{f(β) + λ‖β‖1.}

where f(β) is smooth and convex.

f(β) = 1
2‖y −Xβ‖

2
2 leads to the

ordinary lasso.

λ is a hyperparameter that
controls the level of penalization.

β̂(λ) is the solution to this
problem for a given λ.
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The Lasso Path

Solving the lasso for λ ∈ [0, λmax),
with

λmax := max
{
λ ∈ R+ | β̂(λ) = 0

}
,

traces the set of all solutions for the
lasso.

The lasso path is piece-wise linear
with breaks wherever the active set
changes.

The active set:

{i : |βi| 6= 0}.
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Figure 1: The lasso path for an
example of the ordinary lasso
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Picking λ

The Problem
Typically don’t know the optimal value for λ. To tackle this, we use
cross-validation to tune for λ.

Grid Search
For p� n, the standard procedure is to create a grid of λs and solve the
lasso numerically.

But this is computationally demanding when p is large.
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Screening Rules
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Feature Screening

Motivation
Many solutions along the regularization path are sparse, especially if
p� n since the number of active features cannot exceed min(n, p).

Basic Idea
Say that we are at step k on the lasso path and are about to solve for step
k + 1.

Intuitively, information at k should tell us something about which features
are going to be active at step k + 1.

The idea is to use this information to discard a subset of the features and
fit the model to a smaller set of features—the screened set.
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The Gradient Perspective of the Path
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Figure 2: The gradient vector along the lasso path
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Screening Rules Seen As Gradient Estimates

Let c(λ) := −∇f(β(λ)) be the so-called correlation vector.

0 ∈ ∇f(β) + λ∂ suggests a simple template for a screening rule:
1. Replace c with an estimate c̃.
2. If |c̃j | < λ, discard feature j.

If c̃ is accurate and not too conservative, we have a useful rule.
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The Hessian Screening Rule
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The Ordinary Lasso

We now focus on the ordinary lasso, `1-regularized least squares:

f(β) = 1
2‖y −Xβ‖

2
2

and
∇f(β) = XT (Xβ − y).

It turns out that we can express the solution as a function of λ:

β̂(λ) =
(
XA

TXA
)−1(

XA
T y − λ sign(β̂A)

)
.

This expression holds for an interval [λk, λk+1] in which no changes occur
in the active set, which means we can retrieve any solution in this range via

β̂(λk+1)A = β̂(λk)A − (λk − λk+1)
(
XA

TXA
)−1 sign

(
β̂(λk)A

)
.
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The Hessian Screening Rule

Take this expression and stick it into the gradient at step k + 1:

c̃H(λk+1) = −∇f
(
β̂(λk+1)A

)
= c(λk) + (λk+1 − λk)XTXA

(
XA

TXA
)−1 sign

(
β̂(λk)A

)
,

which is the basic form of our screening rule: The Hessian Screening
Rule.

Note that this is an exact expression for the correlation vector (negative
gradient) at step k + 1 if the activate set has remained unchanged.

The Hessian Screening Rule is a heuristic (un-safe) rule, so it needs
safe-guarding in order to avoid discarding active features.
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The Hessian and Strong Screening Rules
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Figure 3: Conceptual comparison of screening rules
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Results
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Setup

• Rows of the feature matrix i.i.d. from N (0,Σ)
• Response generated from N (Xβ, σ2I) with σ2 = βTΣβ/SNR
• s non-zero coefficients, equally spaced throughout the coefficient
vector

Scenario 1 (Low-Dimensional)
n = 10 000, p = 100, s = 5, and SNR = 1

Scenario 2 (High-Dimensional)
n = 400, p = 40 000, s = 20, and SNR = 2

Code is located at
github.com/jolars/HessianScreening
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https://github.com/jolars/HessianScreening


Effectiveness
ρ = 0 ρ = 0.4 ρ = 0.8
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Figure 4: Number of features screened when fitting a lasso path for
`1-regularized least-squares to a design with varying correlation (ρ), n = 200,
and p = 20000. The actual number of active features at each step across
iterations is given as a dashed line.
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Simulated Data
Least-Squares

n = 10000, p = 100

Least-Squares

n = 400, p = 40000

Logistic

n = 10000, p = 100

Logistic

n = 400, p = 40000
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Figure 5: Time to fit a full regularization path for `1-regularized least-squares
and logistic regression to a design with n observations, p features, and pairwise
correlation between features of ρ. Time is relative to the minimal value for each
group.
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Discussion

• Simple, intuitive, idea
• Performs well in our examples
• Handles the highly-correlated case very well
• Works for arbitrary loss functions that are twice differentiable
• Works for other penalty functions too (SLOPE, MCP, SCAD, Elastic
Net)
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