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The Lasso

A type of penalized regression, represented by the following convex
optimization problem:

miimize {(5) + N3]}
where f(8) is smooth and convex.

f(B) = %Hy — X B||3 leads to the

. Y
ordinary lasso. B
A is a hyperparameter that LT
controls the level of penalization. SR
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B(A) is the solution to this N
problem for a given A. N

A
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The Lasso Path

Solving the lasso for A € [0, Amax),

with
9 .

Amax = max{)\ER+ | ﬁ —O} A

SN
traces the set of all solutions for the
lasso. i
The lasso path is piece-wise linear 0 1 \ : : :
with breaks wherever the active set 0 100 200 300
changes. A
The active set: Figure 1: The lasso path for an

example of the ordinary lasso

{i:[8:] # 0}

2/16



Picking \

The Problem
Typically don’t know the optimal value for A. To tackle this, we use
cross-validation to tune for A.
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Grid Search

For p > n, the standard procedure is to create a grid of As and solve the
lasso numerically.
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Picking \

The Problem
Typically don’t know the optimal value for A. To tackle this, we use
cross-validation to tune for A.

Grid Search
For p > n, the standard procedure is to create a grid of As and solve the
lasso numerically.

But this is computationally demanding when p is large.
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Screening Rules

4/16



Feature Screening

Motivation
Many solutions along the regularization path are sparse, especially if
p > n since the number of active features cannot exceed min(n, p).
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Feature Screening

Motivation
Many solutions along the regularization path are sparse, especially if
p > n since the number of active features cannot exceed min(n, p).

Basic Idea
Say that we are at step k on the lasso path and are about to solve for step
k+1.

Intuitively, information at k should tell us something about which features
are going to be active at step k + 1.

The idea is to use this information to discard a subset of the features and
fit the model to a smaller set of features—the screened set.
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The Gradient Perspective of the Path
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Figure 2: The gradient vector along the lasso path
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Screening Rules Seen As Gradient Estimates

Let ¢c(A) := =V f(B()N)) be the so-called correlation vector.

0 € Vf(B) + A0 suggests a simple template for a screening rule:
1. Replace ¢ with an estimate ¢.
2. If |¢j| < A, discard feature j.

If ¢ is accurate and not too conservative, we have a useful rule.
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The Hessian Screening Rule
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The Ordinary Lasso

We now focus on the ordinary lasso, ¢1-regularized least squares:

£(6) = lly - XBI3

and

VI(B) = XT(XB ~y).
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The Ordinary Lasso

We now focus on the ordinary lasso, ¢1-regularized least squares:

£(6) = lly - XBI3

and
VI(B) = XT(XB - y).
It turns out that we can express the solution as a function of A:
A 71 . A
BN = (Xa"X4)" (Xa"y — Asign(Ba)).

This expression holds for an interval [\, Ag+1] in which no changes occur
in the active set, which means we can retrieve any solution in this range via

Br)a = B A — Mk = A1) (XaTX2) ™ sign (BO\k).a)-
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The Hessian Screening Rule

Take this expression and stick it into the gradient at step k + 1:

T Ner1) = =V (B(As1)4)
= (M) + (Akt1 — /\k)XTXA(XATX.A)_l sign (B(Ar).a),

which is the basic form of our screening rule: The Hessian Screening
Rule.

Note that this is an exact expression for the correlation vector (negative
gradient) at step k + 1 if the activate set has remained unchanged.

The Hessian Screening Rule is a heuristic (un-safe) rule, so it needs
safe-guarding in order to avoid discarding active features.
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The Hessian and Strong Screening Rules
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Figure 3: Conceptual comparison of screening rules
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Results
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Setup

e Rows of the feature matrix i.i.d. from N(0,%)

e Response generated from N(X 3,021) with 0 = BTX3/SNR

e s non-zero coefficients, equally spaced throughout the coefficient
vector

Scenario 1 (Low-Dimensional)
n = 10000, p = 100, s = 5, and SNR =1

Scenario 2 (High-Dimensional)
n = 400, p = 40000, s = 20, and SNR = 2

Code is located at
github.com/jolars/HessianScreening
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https://github.com/jolars/HessianScreening

Effectiveness
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Figure 4: Number of features screened when fitting a lasso path for
{1-regularized least-squares to a design with varying correlation (p), n = 200,
and p = 20000. The actual number of active features at each step across
iterations is given as a dashed line.
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Simulated Data
Least-Squares Least-Squares Logistic Logistic

n=10000, p =100 n =400, p=40000 n=10000, p=100 n =400, p= 40000
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Figure 5: Time to fit a full regularization path for ¢,-regularized least-squares
and logistic regression to a design with n observations, p features, and pairwise
correlation between features of p. Time is relative to the minimal value for each
group.
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Discussion

Simple, intuitive, idea

Performs well in our examples

Handles the highly-correlated case very well

Works for arbitrary loss functions that are twice differentiable

Works for other penalty functions too (SLOPE, MCP, SCAD, Elastic
Net)
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