Collaborative Learning by Detecting Collaboration Partners

Shu Ding, Wei Wang {dings, wangw}@lamda.nju.edu.cn

NeurIPS 2022

Shu Ding, Wei Wang (Nanjing University)

Collaborative Learning by Detecting Collaboration Partners

Collaborative Learning

- Massive amounts of data are naturally dispersed over numerous clients. Each client only has limited data.
- Collaborative learning is a promising paradigm that enables the clients to learn models through collaboration.

• *Centralized model*: return one single model for all clients

 Personalized model: return different models for different clients

・ロット 全部 マイロット

э.

Centralized model

One single model may perform badly on clients whose distributions are different from the average distribution.

Personalized model

Learning personalized models is impractical when the number of clients N is very large since this costs unaffordable computational resources.

• Can we return K ($K \ll N$) appropriate models for N heterogeneous clients and expect that the returned models have comparable performance to personalized models?

イロト 不得 トイヨト イヨト

Setting

Preliminaries

- Clients $\{C_1, \ldots, C_N\}$ with distributions $\{\mathcal{D}_1, \ldots, \mathcal{D}_N\}$
- Each client C_i has access to m_i examples $S_i = \{(x_1^i, y_1^i), \dots, (x_{m_i}^i, y_{m_i}^i)\}$ drawn from \mathcal{D}_i
- Total number of examples $M = \sum_{i=1}^{N} m_i$
- Collaborative learning scenario
 - Train the model over the weighted union of all samples $S_{\alpha} = \sum_{j=1}^{N} \alpha_j S_j$
 - The model for C_i can be learned by minimizing $\hat{\mathcal{L}}_{\alpha_i}(h) = \sum_{j=1}^N \alpha_{ij} \hat{\mathcal{L}}_{S_j}(h)$ with collaboration vector $\alpha_i = (\alpha_{i1}, \dots, \alpha_{iN}) \in \Delta^N$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Theorem (Generalization Bound)

Let \mathcal{H} be the hypothesis space with VC-dimension d. Denote $h_i^* = \arg \min_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}_i}(h)$ and $\hat{h}_{\alpha_i} = \arg \min_{h \in \mathcal{H}} \hat{\mathcal{L}}_{\alpha_i}(h)$. For any given $\delta \in (0,1)$ and $\forall i \in \{1,\ldots,N\}$, with probability at least $1 - \delta$:

$$\mathcal{L}_{\mathcal{D}_i}(\hat{h}_{\alpha_i}) - \mathcal{L}_{\mathcal{D}_i}(h_i^{\star}) \leq 2\sum_{j=1}^N \alpha_{ij} d_{\mathcal{H}}(\mathcal{D}_i, \mathcal{D}_j) + 2\mu \sqrt{\sum_{j=1}^N \frac{\alpha_{ij}^2}{m_j}} \sqrt{8(d\log(2M) + \log \frac{8}{\delta})}.$$

Here $d_{\mathcal{H}}(\mathcal{D}_i, \mathcal{D}_j) = \sup_{h \in \mathcal{H}} \left| \mathcal{L}_{\mathcal{D}_i}(h) - \mathcal{L}_{\mathcal{D}_j}(h) \right|$ is the Integral Probability Metrics (IPM).

Shu Ding, Wei Wang (Nanjing University)

Theoretical Analysis

Theorem (Optimal Collaboration Vector)

Let $\Xi_i^j = d_{\mathcal{H}}(\mathcal{D}_i, \mathcal{D}_j)$ and $\lambda = \mu \sqrt{8(d \log(2M) + \log \frac{8}{\delta})}$. For client C_i , sort $\{\Xi_i^1, \ldots, \Xi_i^N\}$ in ascending order to get $\{\Xi_i^{\sigma(1)}, \ldots, \Xi_i^{\sigma(N)}\}$. The optimal α_i^* for client C_i is given by

$$\alpha_{ij}^{\star} = \left[\frac{m_j(\zeta - \Xi_i^j)}{\sum_{q \leq q_i} m_{\sigma(q)}(\zeta - \Xi_i^{\sigma(q)})}\right]_+$$

Here
$$[\cdot]_{+} = max(\cdot,0)$$
, ζ is the larger root of equation $\sum_{q \leq q_i} m_{\sigma(q)} \left(\zeta - \Xi_i^{\sigma(q)}\right)^2 = \lambda^2$, and $q_i = \arg\max_t \left\{t \middle| \zeta \geqslant \Xi_i^{\sigma(t)} \land \left(\sum_{q \leq t} m_{\sigma(q)} \Xi_i^{\sigma(q)}\right)^2 \geqslant \left(\sum_{q \leq t} m_{\sigma(q)}\right) \left(\sum_{q \leq t} m_{\sigma(q)} (\Xi_i^{\sigma(q)})^2 - \lambda^2\right)\right\}.$

• $\hat{h}_{\alpha_i^\star}$ with respect to the optimal α_i^\star is referred as the *personalized* model for client C_i

イロン 不良 とくほう 不良 とうせい

- In the directed graph A, α^{*}_{ij} > 0 means C_j is beneficial to C_i. Clients with similar incoming edges are called **collaboration partners** since they need similar contribution from other clients.
- Intuitively, collaboration partners should be in the same group. We could probably return the same model for C₁, C₂, C₃, C₄ while it is inappropriate to return the same model for C₄, C₅.

In graph A = (V, E), |V| = N, node *i* denotes C_i and the weight of edge from *j* to *i* is α_{ij}^{\star} .

くぼ マイロ マイ マイ

For the General Case

- Collaboration with Modularity Maximization
 - $\ensuremath{\,^\circ}$ Construct matrix U to evaluate the $incoming-edge\ similarity$ among clients

$$\mathbf{U} = \mathbf{D}_{in}^{-\beta} \mathbf{A} \mathbf{A}^T \mathbf{D}_{in}^{-\beta}$$

• Use Modularity as the objective function to evaluate the quality of group partitions

$$Q(\mathcal{G}) = \frac{1}{2W} \sum_{i,j} \left[w_{ij} - \frac{d_i d_j}{2W} \right] \delta(g_i, g_j)$$

• Relax the modularity maximization problem as a SemiDefinite Programming

$$\max \sum_{\mathcal{M}^{+}} \mathcal{M}_{ij} \boldsymbol{\nu}_{i} \cdot \boldsymbol{\nu}_{j} + \sum_{\mathcal{M}^{-}} -\mathcal{M}_{ij} \left(1 - \boldsymbol{\nu}_{i} \cdot \boldsymbol{\nu}_{j}\right)$$
s.t. $\boldsymbol{\nu}_{i} \cdot \boldsymbol{\nu}_{i} = 1, \forall i \in \{1, \dots, N\}; \quad \boldsymbol{\nu}_{i} \cdot \boldsymbol{\nu}_{j} \ge 0, \quad \forall i \neq j,$
 $\boldsymbol{\nu}_{i} \in \mathbb{R}^{K}, \forall i \in \{1, \dots, N\}.$

э.

イロト イボト イヨト イヨト

Collaboration with Modularity Maximization

Find reasonable group partitions by solving the SDP

Given matrix U, let $Q(\mathcal{G})$ be the modularity value of the group partition \mathcal{G} obtained by solving the SDP using rounding techniques. Then $Q(\mathcal{G}) > \kappa \text{OPT}_{Q(\mathcal{G})} - (1 - \kappa)$ where $\kappa = 0.766$ is the approximation factor.

Detect bad clients

Edge $e_{ij} \in \mathbf{U}$ is a *weak edge* if its weight $w_{ij} < \frac{1}{N}$. A group is divided into several disjoint parts after removing all weak edges within the group. Clients do not belong to the largest part are *bad clients*. Bad clients cannot be provided with good performance guarantee.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

For the General Case

- Collaboration with Modularity Maximization
 - Number of bad clients

Given the group partition $\mathcal{G} = \{G_1, \dots, G_K\}$ returned by Algorithm ACLMM, assume $N_k \ge 2\sqrt{Z_{in}}, \forall k \in \{1, \dots, K\}$. Let $N_{min} = \min_k N_k$, then $|\mathcal{B}| \le \frac{N_{min} - \sqrt{N_{min}^2 - 4Z_{in}}}{2}$, where $Z_{in} \le \frac{N}{2(N-1)} \left[\frac{N^2 - KN}{K} - 2W\left((\kappa + 1)\text{OPT}_{Q(\mathcal{G})} - \frac{K-1}{K}\right) \right]$.

• Theoretical guarantee

Let $\mathcal{G} = \{G_1, \ldots, G_K\}$ be the group partition returned by solving the SDP. $\hat{h}_{\alpha_{G_k}}$ is the model returned by Algorithm ACLMM for client C_i in group G_k . $upp(\hat{h}_{\alpha_{G_k}})$ is the upper bound of the expected risk of $\hat{h}_{\alpha_{G_k}}$ and $upp(\hat{h}_{\alpha_i^*})$ is the upper bound of the expected risk of the personalized model $\hat{h}_{\alpha_i^*}$. The following result holds except for the bad clients in \mathcal{B} :

$$\operatorname{upp}(\hat{h}_{\boldsymbol{\alpha}_{G_k}}) - \operatorname{upp}(\hat{h}_{\boldsymbol{\alpha}_i^*}) \leq O\left(\eta(1-\tau)\sqrt{\frac{N}{N-1}}\right).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Collaboration with Clustering

Potential structures

There exists a potential partition $\mathcal{P}^* = \{P_1^*, \dots, P_K^*\}$ s.t. $\Phi(\mathcal{P}) = \sum_{k=1}^K \sum_{C_i \in P_k} d(\alpha_i^*, \bar{\alpha}_k)$ is small. Assume that $\{\alpha_1^*, \dots, \alpha_N^*\}$ satisfy $(1 + \gamma, \epsilon)$ -approximation-stability property.

• Detect bad clients

 $\bar{d} = \frac{1}{N} \text{OPT}_{\Phi(\mathcal{P})} \text{ is the average distance. } d^* = \frac{\gamma \bar{d}}{\epsilon t} \text{ is the critical distance. } C_i \text{ is the bad client if } d_1(\boldsymbol{\alpha}_i^*) \ge d^* \text{ or } d_2(\boldsymbol{\alpha}_i^*) - d_1(\boldsymbol{\alpha}_i^*) \le \frac{t}{2}d^*.$

The example here has better structures than the aforementioned example.

- 人間 ト イヨト イヨト

For the Special Case

Collaboration with Clustering

• Number of bad clients

Let $\mathcal{P} = \{P_1, \ldots, P_K\}$ be the group partition produced by Algorithm ACLC. Then $|\mathcal{B}| < (6 + \frac{t}{\gamma})\beta\epsilon N$ where t > 2 and $\beta > 1$ are given constants.

• Theoretical guarantee

Let $\mathcal{P} = \{P_1, \ldots, P_K\}$ be the group partition produced by Algorithm ACLC. $\hat{h}_{\alpha_{P_k}}$ is the model returned by Algorithm ACLC for client C_i in group P_k . $upp(\hat{h}_{\alpha_{P_k}})$ is the upper bound of the expected risk of $\hat{h}_{\alpha_{P_k}}$ and $upp(\hat{h}_{\alpha_i^*})$ is the upper bound of the expected risk of the personalized model $\hat{h}_{\alpha_i^*}$. The following result holds except for the bad clients in \mathcal{B} :

$$upp(\hat{h}_{\boldsymbol{\alpha}_{P_k}}) - upp(\hat{h}_{\boldsymbol{\alpha}_i^{\star}}) \leq O\left(\frac{\gamma \text{OPT}_{\Phi(\mathcal{P})}}{\epsilon t N}\right).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Experimental Results

 The model learned with ACLMM performs better than the centralized model and is comparable to the personalized model.

- The model learned with ACLC performs much better than the centralized model and is comparable to the personalized model.
- The gap between the model return by ACLC and the personalized model is small.

イロト 不得下 イヨト イヨト

э

Thank you!

Shu Ding, Wei Wang (Nanjing University)

Collaborative Learning by Detecting Collaboration Partners

э.

イロト イヨト イヨト イヨト