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Our findings and contributions

* Label noise implicitly exists in adversarial training

* Robust overfitting is in fact an early part of a double descent, and can be explained by
such label noise

* Alternative labeling of adversarial examples can reduce the label noise and mitigate
robust overfitting



Background: Adversarial training

« Adversarial training is one of the most effective ways to enhance the adversarial
robustness of deep neural networks

Step 1: Generate a set of adversarial examples by perturbing their clean counterparts

r = arg max,cp_(z) L(f(2),y)

Step 2: Train the classifier on the set of adversarial examples

6* = arg min - Z U fo(z"), 7).
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Label noise implicitly exists in adversarial training

* Adversarial training practice introduces distribution mismatch between true label
distribution and assigned label distribution of adversarial examples

True Label

ﬂn -> Adversarial perturbation can distort the data
semantics, which means adversarial examples have

different true label distribution from their clean

ﬂl:L counterparts
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Label noise implicitly exists in adversarial training

* Adversarial training practice introduces distribution mismatch between true label
distribution and assigned label distribution of adversarial examples
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Label noise implicitly exists in adversarial training

* Adversarial training practice introduces distribution mismatch between true label
distribution and assigned label distribution of adversarial examples

True Label Assigned Label
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Label noise implicitly exists in adversarial training

* Adversarial training practice introduces distribution mismatch between true label
distribution and assigned label distribution of adversarial examples

True Label Assigned Label

x ﬂq
/ pe ) -> Assigned labels of adversarial

examples are directly copied from that
of their clean counterparts
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Label noise implicitly exists in adversarial training

* Adversarial training practice introduces distribution mismatch between true label
distribution and assigned label distribution of adversarial examples

True Label Assigned Label




Label noise implicitly exists in adversarial training

True Label Assigned Label

* Distribution mismatch causes label noise

Coupling inequality: ~ P(Y’ £Y'|z') > |P(Y'|z") — P(Y'|2")||tv

Label noise Distribution mismatch



Effect of Label noise in adversarial training

* Label noise in adversarial training explains robust overfitting
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Effect of Label noise in adversarial training

* Robust overfitting should be double descent based on this understanding

o\o — WRN-28-5
~ 70

| -

o

| -

| -

W 65 -

]

(V)]

0]

60

)

(V)]

2

S 55-

o

10° 10! 102 103

Epochs

Double descent in adversarial training



Effect of Label noise in adversarial training

Robust Test Error (%)
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Robust overfitting should be double descent based on this understanding
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Mitigate label noise in adversarial training

e Label noise in adversarial training comes from the mismatch between the true label
distribution and assigned label distribution

P(Y'#Y'|2') 2 |P(Y'|2") = P(Y'|2) v



Mitigate label noise in adversarial training

PY'#Y'|2') > |P(Y'|z") — P(Y'|2')|lrv

* Instead of one-hot labels, we can use the predictive label distribution of an adversarially
robust classifier to label adversarial examples, which can approximate the true label
distribution of adversarial examples




Mitigate label noise in adversarial training

* We can use confidence calibration to further improve the approximation

* temperature scaling
* interpolation between predictive distribution and one-hot label
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Mitigate label noise in adversarial training

* We can use confidence calibration to further improve the approximation
* temperature scaling

* interpolation between predictive distribution and one-hot label
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Future works

e Other effects of label noise on adversarial training

* Advanced methods to mitigate label noise in adversarial training



