

Thirty-sixth Conference on Neural Information Processing Systems (NeurIPS 2022)

University of Science and Technology of China (USTC)

DARE: Disentanglement-Augmented Rationale Extraction

Linan Yue^{1,2}, Qi Liu^{1,2}*, Yichao Du^{1,2}, Yanqing An^{1,2}, Li Wang^{1,2,3}, Enhong Chen^{1,2}

1: Anhui Province Key Laboratory of Big Data Analysis and Application,

University of Science and Technology of China

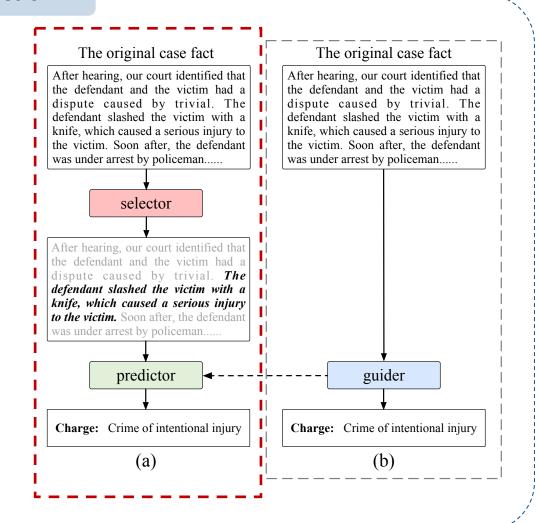
2: State Key Laboratory of Cognitive Intelligence

3: ByteDance

{lnyue,duyichao,anyq,wl063}@mail.ustc.edu.cn;

{qiliuql,cheneh}@ustc.edu.cn

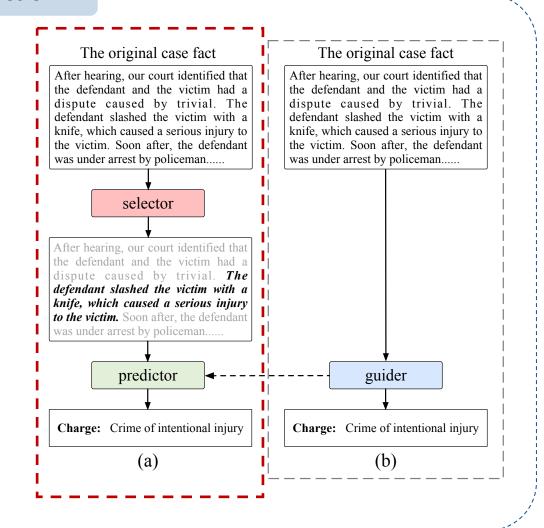
Presented by: Linan Yue


H Background

Rationale Extraction

Rationale Extraction

• It extracts a short and coherent part of original inputs (i.e., *rationale*) as an explanation to support the prediction results when yielding them.

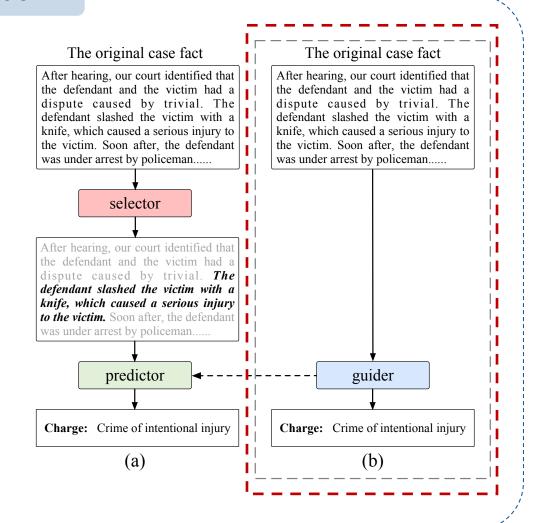


H Background

Rationale Extraction

- Rationale Extraction
- It extracts a short and coherent part of original inputs (i.e., *rationale*) as an explanation to support the prediction results when yielding them.
- > Types of Rationale Extraction
- Traditional rationale extraction approaches cascade the *selector* and the *predictor*.

H Background

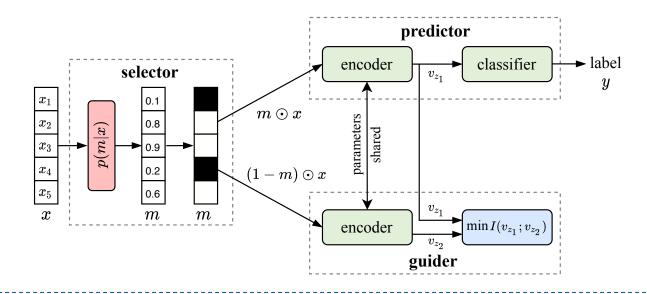

Rationale Extraction

Rationale Extraction

• It extracts a short and coherent part of original inputs (i.e., *rationale*) as an explanation to support the prediction results when yielding them.

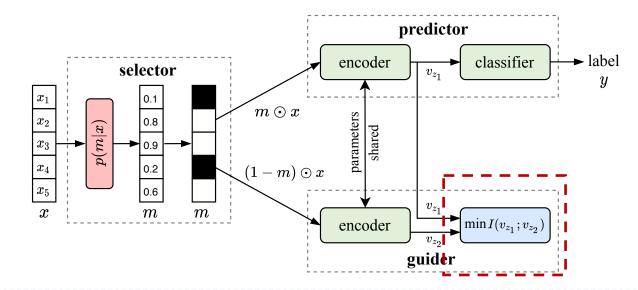
> Types of Rationale Extraction

- Traditional rationale extraction approaches cascade the *selector* and the *predictor*.
- guidance pattern: adding an external guider



DARE

- > Architecture of DARE
- *self-guided*: Different from the previous model that requires external guidance, DARE aims to guide itself to extract more comprehensive rationales by squeezing more information from the input.



DARE

> Architecture of DARE

- *self-guided*: Different from the previous model that requires external guidance, DARE aims to guide itself to extract more comprehensive rationales by squeezing more information from the input.
- Disentangled representations learning with *mutual information* minimization:

DARE

MI minimization

> Mutual Information Estimation

• Mutual Information:

$$I(X;Y) = \mathbb{E}_{p(x,y)} \left[\log \frac{p(x,y)}{p(x)p(y)} \right]$$

InfoNCE: MI maximization

$$I_{nce} = \frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{f(x_i, y_i)}}{\frac{1}{N} \sum_{j=1}^{N} e^{f(x_i, y_j)}} = \frac{1}{N} \sum_{i=1}^{N} f(x_i, y_i) - \frac{1}{N} \sum_{i=1}^{N} \left| \log \frac{1}{N} \sum_{j=1}^{N} e^{f(x_i, y_j)} \right|$$

CLUB: MI minimization

$$I_{club} = \frac{1}{N} \sum_{i=1}^{N} \log p(y_i|x_i) - \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \log p(y_j|x_i)$$

II DARE

MI minimization

> CLUB NCE

$$I_{nce} = \frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{f(x_i, y_i)}}{\frac{1}{N} \sum_{j=1}^{N} e^{f(x_i, y_j)}} = \frac{1}{N} \sum_{i=1}^{N} f(x_i, y_i) - \frac{1}{N} \sum_{i=1}^{N} \left[\log \frac{1}{N} \sum_{j=1}^{N} e^{f(x_i, y_j)} \right]$$

$$I_{club} = \frac{1}{N} \sum_{i=1}^{N} \log p(y_i|x_i) - \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \log p(y_j|x_i)$$

• Applying the Jensen's inequality:

$$I_{nce} \leq \frac{1}{N} \sum_{i=1}^{N} f(x_i, y_i) - \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \log \left[e^{f(x_i, y_j)} \right] = \frac{1}{N} \sum_{i=1}^{N} f(x_i, y_i) - \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} f(x_i, y_j)$$

II Experiments

Rationale evaluation

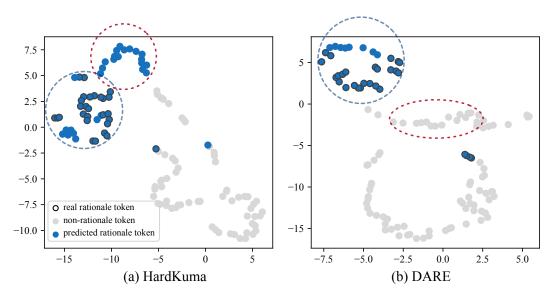
- Are the rationales extracted plausible and comprehensive?
- > Is the disentanglement operation effective?
- > Is CLUB_NCE effective on estimating mutual information?

I Experiments

Rationale evaluation

> Are the rationales extracted plausible and comprehensive?

Table 1: Precision, Recall and F1 of selected rationales for three aspects. Among them, "% selected" represents the average proportion of selected tokens in the original text.


Methods	Appearance				Smell				Palate			
	Precision	Recall	F1	% selected	Precision	Recall	F1	% selected	Precision	Recall	F1	% selected
Bernoulli	96.3	56.5	71.2	14	95.1	38.2	54.5	7	80.2	53.6	64.3	7
HardKuma	98.1	65.1	78.3	13	96.8	31.5	47.5	7	89.8	48.6	63.1	7
InfoCal IB	97.3	67.8	79.9	13	94.3	34.5	50.5	7	89.6	51.2	65.2	7
$InfoCal(\overline{H}K)$	97.9	71.7	82.8	13	94.8	42.3	58.5	7	89.4	56.9	69.5	7
DARE (L1Out)	91.5	26.7	41.3	13	84.0	38.0	52.3	7	55.4	57.0	56.2	7
DARE (CLUB)	93.7	73.0	82.1	13	90.9	42.9	58.3	7	88.7	54.3	67.4	7
DARE	95.1	73.5	82.9	13	88.6	46.8	61.2	7	85.6	59.0	69.9	7
(std)	± 0.2	± 0.3	± 0.1	-	± 0.8	± 0.6	± 0.6	-	± 0.6	± 0.5	± 0.2	-

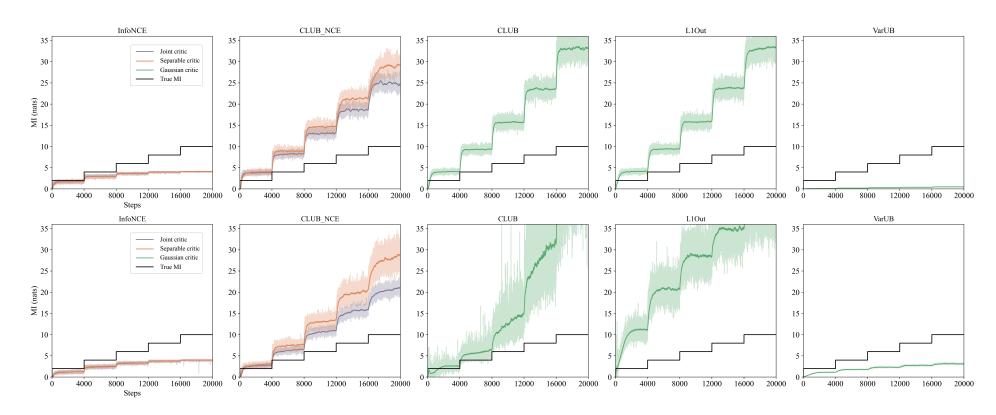
II Experiments

Rationale evaluation

> Is the disentanglement operation effective?

Euclidean(EU) distance:

7.62


12.18

II Experiments

MI evaluation

> Is CLUB_NCE effective on estimating mutual information?

Thirty-sixth Conference on Neural Information Processing Systems (NeurIPS 2022)

University of Science and Technology of China (USTC)

Thank you for listening!