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1 Background

> Rationale Extraction

* It extracts a short and coherent part of
original inputs (i.e., rationale) as an
explanation to support the prediction results
when yielding them.
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Types of Rationale Extraction

. * Traditional rationale extraction approaches
cascade the selector and the predictor.
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1 Background

Rationale Extraction

It extracts a short and coherent part of
original 1nputs (i1.e., rationale) as an
explanation to support the prediction results
when yielding them.

Types of Rationale Extraction

Traditional rationale extraction approaches
cascade the selector and the predictor.

guidance pattern: adding an external guider

Rationale Extraction
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> Architecture of DARE

» self-guided: Different from the previous model that requires external guidance,
DARE aims to guide itself to extract more comprehensive rationales by squeezing
more information from the input.
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> Architecture of DARE

» self-guided:. Different from the previous model that requires external guidance,
DARE aims to guide itself to extract more comprehensive rationales by squeezing
more information from the input.

* Disentangled representations learning with mutual information minimization:
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ih DARE

AR MI minimization @ .

> Mutual Information Estimation

Mutual Information:

I(X;Y) =Epxy) [Iog p[()>(<))<;9)(/))’ )]

 InfoNCE: MI maximization
ef (zi,y4) 1

Ince — A7 ] — X7 Y1) T X7 ] NT f(@iyi)
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« CLUB: MI minimization
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ih DARE

> CLUB _NCE

N I

ef (@i,yi) 1 : 1 N 1 N
nce — X7 Zlog N — AT Z f (x'ia yz) L Z log AT Z'ef(mi’yj)
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Lerup = Zlogp yz|xz - N2 Zzlog:p(yj|x2)
i=1j=1 |

* Applying the Jensen’s inequality :
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1 Experiments

AR Rationale evaluation - oo
» Are the rationales extracted plausible and comprehensive ?
» 1Is the disentanglement operation effective ?

» Is CLUB_NCE effective on estimating mutual information ?
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1 Experiments

o Rationale evaluation oo .

» Are the rationales extracted plausible and comprehensive ?

Table 1: Precision, Recall and F1 of selected rationales for three aspects. Among them, “% selected”
represents the average proportion of selected tokens in the original text.

| Appearance | Smell | Palate
Methods
| Precision Recall F1 % selected | Precision Recall F1 % selected | Precision Recall F1 % selected

7 80.2 53.6 643 7
HardKuma 98.1 65.1 783 13 96.8 31.5 475 7 89.8 48.6 63.1 7
InfoCal_IB 97.3 67.8 79.9 13 94.3 345 505 7 89.6 512 652 7
InfoCal(HK) 97.9 71.7 82.8 13 94.8 423 585 7 89.4 56.9 69.5 7
DARE (L10ut) | 91.5 26.7 413 13 84.0 38.0 523 7 554 57.0 56.2 7
DARE (CLUB)| 93.7 73.0 82.1 13 90.9 429 583 7 88.7 543 674 7
DARE 95.1 735 829 13 88.6 46.8 61.2 7 85.6 59.0 69.9 7
(std) +02 +03 +£0.1 - +0.8 +06 +0.6 - +0.6 £05 £0.2 -

i Bernoulli 96.3 565 712 14 95.1 382 54.5
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1 Experiments

o Rationale evaluation oo .
. » Is the disentanglement operation effective ? §
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1 Experiments

MI evaluation

» Is CLUB_NCE effective on estimating mutual information
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Thank you for listening!
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