

Empirical Phase Diagram for Three-layer Neural Networks with infinite Width

Hanxu Zhou¹, Qixuan Zhou¹, Zhenyuan Jin¹, Tao Luo^{1,2}, Yaoyu Zhang^{1,3}, Zhi-Qin John Xu^{1,*}

(*corresponding author)

¹School of Mathematical Sciences, Institute of Natural Sciences, MOE-LSC and Qing Yuan Research Institute, Shanghai Jiao Tong University

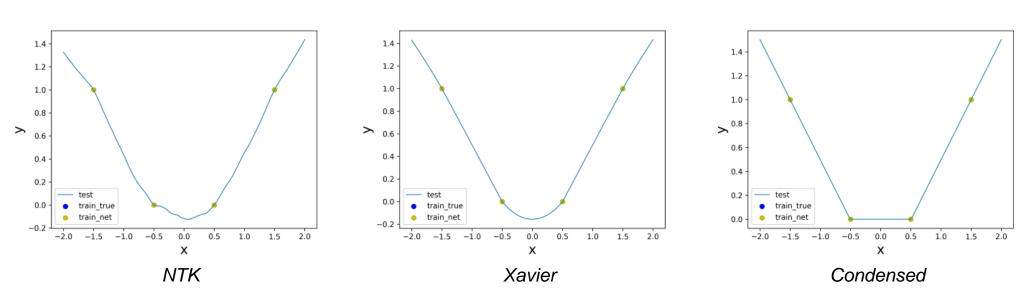
²CMA-Shanghai

³Shanghai Center for Brain Science and Brain-Inspired Technology

2022.10.11

思源•爱

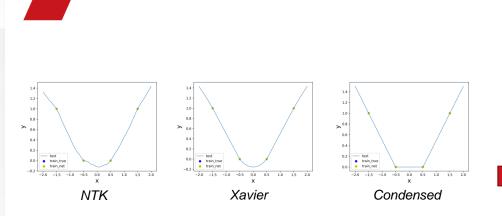
The output of different initialization methods has differentiated properties



• Learning four data points by three-layer ReLU NNs with different initialization methods.

Motivation

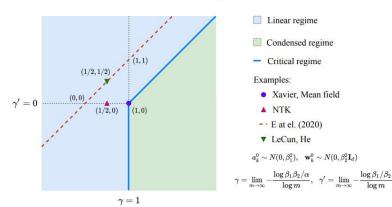
The output of different initialization methods has differentiated properties



• Learning four data points by three-layer ReLU NNs with different initialization methods.

Phase Diagram for Two-layer ReLU Neural Networks at Infinite-width Limit Tao Luo[#], Zhi-Qin John Xu[#], Zheng Ma, Yaoyu Zhang^{*}

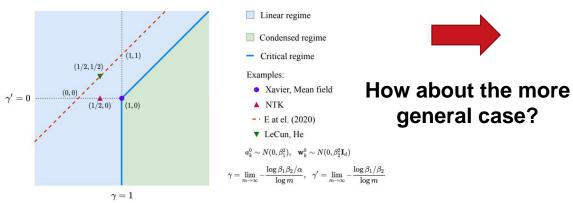
Phase Diagram



Motivation

The output of different initialization methods has differentiated properties

Phase Diagram for Two-layer ReLU Neural Networks at Infinite-width Limit Tao Luo[#], Zhi-Qin John Xu[#], Zheng Ma, Yaoyu Zhang^{*}



Difficulty:

- Multi-layer structure
- Non-linearity
- Distinct characteristics

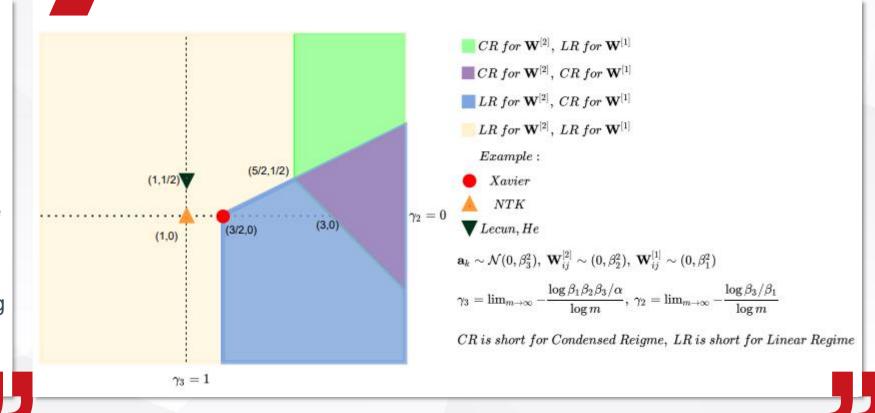
Curiosity:

- Different frow two-layer
- Distinct dynamics in one NN

Overview

This study: make a step towards drawing a phase diagram for three-layer ReLU NNs with infinite width

- Figure out key quantities and divide the dynamics into:
 - a linear regime
 - a condensed regime
 - a critical regime.
- Identify the condensation as the strong non-linear signature behavior
- Suggest a complicated
 dynamical regimes consisting
 of three possible regimes,
 together with their mixture.



A three-layer NN with *m* hidden neurons for each layer is,

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{\alpha} \boldsymbol{a}^{T} \sigma \big(\boldsymbol{W}^{[2]} \sigma (\boldsymbol{W}^{[1]} \boldsymbol{x}) \big)$$

where, $\boldsymbol{x} = [\boldsymbol{x}^T, 1]^T$, $\boldsymbol{W}^{[1]} = [\boldsymbol{W}^{[1]}, \boldsymbol{b}_k^{[1]}]^T$, $\overline{\boldsymbol{x}} = \sigma(\boldsymbol{W}^{[1]}\boldsymbol{x})$, $\overline{\boldsymbol{x}} = [\overline{\boldsymbol{x}}^T, 1]^T$, $\boldsymbol{W}^{[2]} = [\boldsymbol{W}^{[2]}, \boldsymbol{b}_k^{[2]}]^T$, and $\boldsymbol{a}_k^0 \sim \mathcal{N}(0, \beta_3^2)$, $\boldsymbol{W}_{kk'}^{[2],0} \sim \mathcal{N}(0, \beta_2^2)$, $\boldsymbol{W}_{kk'}^{[1],0} \sim \mathcal{N}(0, \beta_1^2)$,

The empirical risk is,

$$R_S(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^n (f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i))^2$$

Preliminary

A three-layer NN with *m* hidden neurons for each layer is, $f_{\theta}(x) = \frac{1}{\alpha} a^T \sigma (W^{[2]} \sigma (W^{[1]} x)), \qquad a_k^0 \sim \mathcal{N}(0, \beta_3^2), W^{[2],0}_{kk'} \sim \mathcal{N}(0, \beta_2^2), W^{[1],0}_{kk'} \sim \mathcal{N}(0, \beta_1^2),$

where, $\mathbf{x} = [\mathbf{x}^T, 1]^T$, $\mathbf{W}^{[1]} = [\mathbf{W}^{[1]}, b_k^{[1]}]^T$, $\overline{\mathbf{x}} = \sigma(\mathbf{W}^{[1]}\mathbf{x}), \overline{\mathbf{x}} = [\overline{\mathbf{x}}^T, 1]^T, \mathbf{W}^{[2]} = [\mathbf{W}^{[2]}, b_k^{[2]}]^T$.

The gradient flow of $\theta = vec\{a, W^{[2]}, W^{[1]}\},\$

$$\frac{\mathrm{d}\boldsymbol{a}}{\mathrm{d}t} = -\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\alpha} \sigma(\boldsymbol{W}^{[2]} \sigma(\boldsymbol{W}^{[1]} \boldsymbol{x}_{i})) e_{i},$$

$$\frac{\mathrm{d}\boldsymbol{W}^{[2]}}{\mathrm{d}t} = -\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\alpha} \boldsymbol{a} \odot \sigma'(\boldsymbol{W}^{[2]} \sigma(\boldsymbol{W}^{[1]} \boldsymbol{x}_{i})) \sigma(\boldsymbol{W}^{[1]} \boldsymbol{x}_{i})^{\mathrm{T}} e_{i},$$

$$\frac{\mathrm{d}\boldsymbol{W}^{[1]}}{\mathrm{d}t} = -\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\alpha} \boldsymbol{W}^{[2]^{\mathrm{T}}} (\boldsymbol{a} \odot \sigma'(\boldsymbol{W}^{[2]} \sigma(\boldsymbol{W}^{[1]} \boldsymbol{x}_{i}))) \odot \sigma'(\boldsymbol{W}^{[1]} \boldsymbol{x}_{i}) \boldsymbol{x}_{i}^{\mathrm{T}} e_{i},$$

where $e_i = \left(\frac{1}{\alpha} a^T \sigma (W^{[2]} \sigma (W^{[1]} x)) - y_i\right)$, the operation \odot is the Hadamard product.

Rescaling and the normalized model

The gradient flow of $\theta = \operatorname{vec}\{a, W^{[2]}, W^{[1]}\},\$

$$\frac{\mathrm{d}\boldsymbol{a}}{\mathrm{d}t} = -\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\alpha} \sigma(\boldsymbol{W}^{[2]} \sigma(\boldsymbol{W}^{[1]} \boldsymbol{x}_{i})) e_{i},$$

$$\frac{\mathrm{d}\boldsymbol{W}^{[2]}}{\mathrm{d}t} = -\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\alpha} \boldsymbol{a} \odot \sigma'(\boldsymbol{W}^{[2]} \sigma(\boldsymbol{W}^{[1]} \boldsymbol{x}_{i})) \sigma(\boldsymbol{W}^{[1]} \boldsymbol{x}_{i})^{\mathrm{T}} e_{i},$$

$$\frac{\mathrm{d}\boldsymbol{W}^{[1]}}{\mathrm{d}t} = -\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\alpha} \boldsymbol{W}^{[2]^{\mathrm{T}}} (\boldsymbol{a} \odot \sigma'(\boldsymbol{W}^{[2]} \sigma(\boldsymbol{W}^{[1]} \boldsymbol{x}_{i}))) \odot \sigma'(\boldsymbol{W}^{[1]} \boldsymbol{x}_{i}) \boldsymbol{x}_{i}^{\mathrm{T}} e_{i},$$

 $\sigma(a\boldsymbol{u}) = a\sigma(\boldsymbol{u}), \sigma'(a\boldsymbol{u}) = \sigma'(\boldsymbol{u})$

The normalized gradient flow of θ ,

$$\begin{aligned} \frac{\mathrm{d}\overline{a}}{\mathrm{d}\overline{t}} &= -\left(\frac{1}{n}\sum_{i=1}^{n}\kappa_{3}\sigma(\overline{\boldsymbol{W}}^{[2]}\sigma(\overline{\boldsymbol{W}}^{[1]}\boldsymbol{x}_{i}))\right)e_{i},\\ \frac{\mathrm{d}\overline{\boldsymbol{W}}^{[2]}}{\mathrm{d}\overline{t}} &= -\kappa_{1}^{2}\left(\frac{1}{n}\sum_{i=1}^{n}\kappa_{3}\overline{\boldsymbol{a}}\odot\sigma'(\overline{\boldsymbol{W}}^{[2]}\sigma(\overline{\boldsymbol{W}}^{[1]}\boldsymbol{x}_{i}))\sigma(\overline{\boldsymbol{W}}^{[1]}\boldsymbol{x}_{i})^{\mathrm{T}}\right)e_{i},\\ \frac{\mathrm{d}\overline{\boldsymbol{W}}^{[1]}}{\mathrm{d}\overline{t}} &= -\kappa_{2}^{2}\left(\frac{1}{n}\sum_{i=1}^{n}\kappa_{3}\overline{\boldsymbol{W}}^{[2]^{\mathrm{T}}}(\overline{\boldsymbol{a}}\odot\sigma'(\overline{\boldsymbol{W}}^{[2]}\sigma(\overline{\boldsymbol{W}}^{[1]}\boldsymbol{x}_{i})))\odot\sigma'(\overline{\boldsymbol{W}}^{[1]}\boldsymbol{x}_{i})\boldsymbol{x}_{i}^{\mathrm{T}}\right)e_{i},\\ \end{aligned}$$
where $\overline{\boldsymbol{a}} = \frac{1}{\beta_{3}}\boldsymbol{a}, \ \overline{\boldsymbol{W}}^{[2]} = \frac{1}{\beta_{2}}\boldsymbol{W}^{[2]}, \ \overline{\boldsymbol{W}}^{[1]} = \frac{1}{\beta_{1}}\boldsymbol{W}^{[1]}, \ \kappa_{1} = \frac{\beta_{3}}{\beta_{2}}, \ \kappa_{2} = \frac{\beta_{3}}{\beta_{1}}, \ \kappa_{3} = \frac{\beta_{1}\beta_{2}\beta_{3}}{\alpha}, \ t = \left(\alpha\prod_{i=1}^{3}\kappa_{i}\right)^{-\frac{1}{2}} \left(\frac{1}{2}\sum_{i=1}^{n}\kappa_{i}\right)^{-\frac{1}{2}} \left(\frac{1}{2}\sum_{i=1}^{n}\kappa$

Rescaling and the normalized model

The normalized gradient flow of θ ,

$$\frac{\mathrm{d}\overline{\boldsymbol{a}}}{\mathrm{d}\overline{t}} = -\left(\frac{1}{n}\sum_{i=1}^{n}\kappa_{3}\sigma(\overline{\boldsymbol{W}}^{[2]}\sigma(\overline{\boldsymbol{W}}^{[1]}\boldsymbol{x}_{i}))\right)e_{i},$$

$$\frac{\mathrm{d}\overline{\boldsymbol{W}}^{[2]}}{\mathrm{d}\overline{t}} = -\kappa_{1}^{2}\left(\frac{1}{n}\sum_{i=1}^{n}\kappa_{3}\overline{\boldsymbol{a}}\odot\sigma'(\overline{\boldsymbol{W}}^{[2]}\sigma(\overline{\boldsymbol{W}}^{[1]}\boldsymbol{x}_{i}))\sigma(\overline{\boldsymbol{W}}^{[1]}\boldsymbol{x}_{i})^{\mathrm{T}}\right)e_{i},$$

$$\frac{\mathrm{d}\overline{\boldsymbol{W}}^{[1]}}{\mathrm{d}\overline{t}} = -\kappa_{2}^{2}\left(\frac{1}{n}\sum_{i=1}^{n}\kappa_{3}\overline{\boldsymbol{W}}^{[2]^{\mathrm{T}}}(\overline{\boldsymbol{a}}\odot\sigma'(\overline{\boldsymbol{W}}^{[2]}\sigma(\overline{\boldsymbol{W}}^{[1]}\boldsymbol{x}_{i})))\odot\sigma'(\overline{\boldsymbol{W}}^{[1]}\boldsymbol{x}_{i})\boldsymbol{x}_{i}^{\mathrm{T}}\right)e_{i},$$

The scaling parameters and infinite-width limit,

$$\kappa_{1} = \frac{\beta_{3}}{\beta_{2}}, \ \kappa_{2} = \frac{\beta_{3}}{\beta_{1}}, \ \kappa_{3} = \frac{\beta_{1}\beta_{2}\beta_{3}}{\alpha}, \ \overline{t} = \left(\alpha \prod_{i=1}^{3} \kappa_{i}\right)^{-\frac{2}{3}}t,$$

$$\mathbf{Assumption 3.1:} \ m_{1} = m_{2} = m$$

$$\mathbf{Assumption 3.2:} \ \beta_{2} = B\beta_{3}$$

$$\gamma_{1} = \lim_{m \to \infty} -\frac{\log \kappa_{1}}{\log m} = 0, \ \gamma_{2} = \lim_{m \to \infty} -\frac{\log \kappa_{2}}{\log m}, \ \gamma_{3} = \lim_{m \to \infty} -\frac{\log \kappa_{3}}{\log m}$$

Rescaling and the normalized model

The scaling parameters and infinite-width limit,

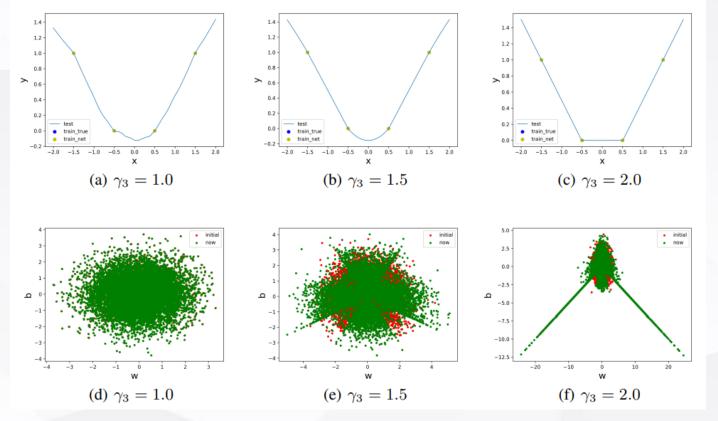
$$\kappa_{1} = \frac{\beta_{3}}{\beta_{2}}, \ \kappa_{2} = \frac{\beta_{3}}{\beta_{1}}, \ \kappa_{3} = \frac{\beta_{1}\beta_{2}\beta_{3}}{\alpha}, \ \bar{t} = \left(\alpha \prod_{i=1}^{3} \kappa_{i}\right)^{-\frac{2}{3}} t, \ \gamma_{2} = \lim_{m \to \infty} -\frac{\log \kappa_{2}}{\log m}, \ \gamma_{3} = \lim_{m \to \infty} -\frac{\log \kappa_{3}}{\log m}$$

Some common initialization methods

Table 1: Common initialization methods with their scaling parameters

Name	α	a	$oldsymbol{W}^{[2]}$	$oldsymbol{W}^{[1]}$	κ_2	κ_3	γ_2	γ_3
NTK Jacot et al. (2018)	$\sqrt{m_1m_2}$	1	1	1	1	$\sqrt{\frac{1}{m_1m_2}}$	0	1
Lecun LeCun et al. (2012)	1	$\sqrt{\frac{1}{m_2}}$	$\sqrt{\frac{1}{m_1}}$	$\sqrt{\frac{1}{d}}$	$\sqrt{\frac{d}{m_2}}$	$\sqrt{\frac{1}{m_1m_2d}}$	$\frac{1}{2}$	1
He He et al. (2015)	1	$\sqrt{\frac{2}{m_2}}$	$\sqrt{\frac{2}{m_1}}$	$\sqrt{\frac{2}{d}}$	$\sqrt{\frac{d}{m_2}}$	$\sqrt{\frac{8}{m_1m_2d}}$	$\frac{1}{2}$	1
Xavier Glorot and Bengio (2010)	1	$\sqrt{rac{2}{m_2+1}}$	$\sqrt{\frac{2}{m_1+m_2}}$	$\sqrt{\tfrac{2}{d+m_1}}$	$\sqrt{\tfrac{d+m_1}{m_2+1}}$	$\sqrt{\frac{8/(m_1+m_2)}{(m_2+1)(d+m_1)}}$	0	$\frac{3}{2}$

Intuitive experiments of synthetic data



Learning four data points by three-layer ReLU NNs with m = 10000 and $\gamma_2 = 0$. The scatter plots in the second row are $\{W_k^{[1]}\}_{k=1}^m = \{(w_k^{[1]}, b_k^{[1]})\}_{k=1}^m$, where red plots represent initial position and green plots represent final position.

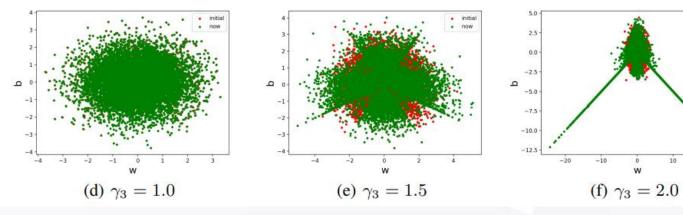
Regime identification and separation

• Relative distance,

$$\mathrm{RD}(\boldsymbol{W}^{[1]}) = \frac{\|\boldsymbol{\theta}_{\boldsymbol{W}_{1}}^{*} - \boldsymbol{\theta}_{\boldsymbol{W}_{1}}(0)\|_{2}}{\|\boldsymbol{\theta}_{\boldsymbol{W}_{1}}(0)\|_{2}}, \ \mathrm{RD}(\boldsymbol{W}^{[2]}) = \frac{\|\boldsymbol{\theta}_{\boldsymbol{W}_{2}}^{*} - \boldsymbol{\theta}_{\boldsymbol{W}_{2}}(0)\|_{2}}{\|\boldsymbol{\theta}_{\boldsymbol{W}_{2}}(0)\|_{2}},$$

- We empirically consider that as $m \to \infty$,
 - Linear regime:
 - Condensed regime:
 - Critical regime:

$$\begin{split} & \sup_{t \in [0, +\infty)} \operatorname{RD} \left(\boldsymbol{W}^{[i]}(t) \right) \to 0, i = 1, 2 \\ & \sup_{t \in [0, +\infty)} \operatorname{RD} \left(\boldsymbol{W}^{[i]}(t) \right) \to +\infty i = 1, 2 \\ & \sup_{t \in [0, +\infty)} \operatorname{RD} \left(\boldsymbol{W}^{[i]}(t) \right) \to O(1), i = 1, 2 \end{split}$$



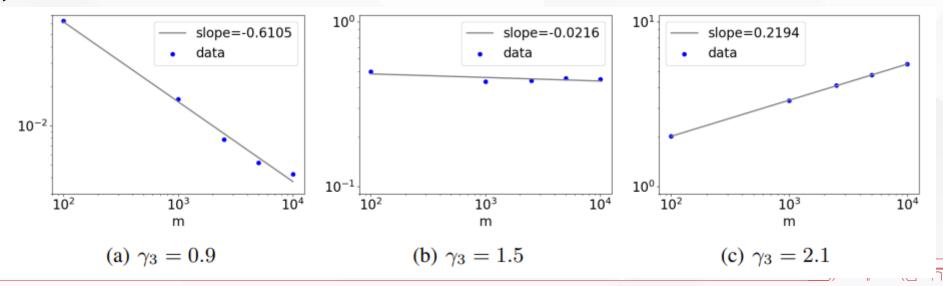
Regime identification and separation

- Relative distance, •
- We empirically found that as $m \to \infty$,

Condensed regime:
$$t \in [0, +\infty]$$

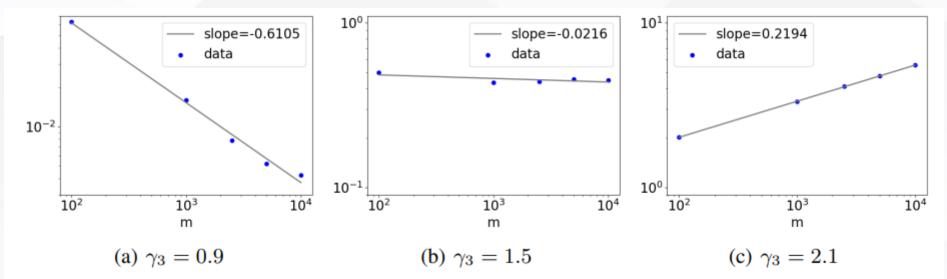
- Critical regime:
- $\mathrm{RD}(\boldsymbol{W}^{[1]}) = \frac{\|\boldsymbol{\theta}_{\boldsymbol{W}_1}^* \boldsymbol{\theta}_{\boldsymbol{W}_1}(0)\|_2}{\|\boldsymbol{\theta}_{\boldsymbol{W}_1}(0)\|_2}, \ \mathrm{RD}(\boldsymbol{W}^{[2]}) = \frac{\|\boldsymbol{\theta}_{\boldsymbol{W}_2}^* \boldsymbol{\theta}_{\boldsymbol{W}_2}(0)\|_2}{\|\boldsymbol{\theta}_{\boldsymbol{W}_2}(0)\|_2},$ $\begin{aligned} \sup_{t \in [0, +\infty)} & \operatorname{RD} \left(\boldsymbol{W}^{[i]}(t) \right) \to 0, i = 1, 2\\ & \operatorname{Sup}_{t \in [0, +\infty)} & \operatorname{RD} \left(\boldsymbol{W}^{[i]}(t) \right) \to +\infty i = 1, 2\\ & \operatorname{Sup}_{t \in [0, +\infty)} & \operatorname{RD} \left(\boldsymbol{W}^{[i]}(t) \right) \to O(1), i = 1, 2 \end{aligned}$

 $RD(W^{[1]})$ v.s. m. Still learn four data points by three-layer ReLU NNs with different γ_3 's and $\gamma_2 = 0$.



Regime identification and separation

 $RD(W^{[1]})$ v.s. m. Still learn four data points by three-layer ReLU NNs with different γ_3 's and $\gamma_2 = 0$.



We quantify the growth of $RD(W^{[i]})$, i = 1,2, as $m \to \infty$, by defining,

- $S_{W[i]} = \lim_{m \to \infty} \frac{\log \text{RD}(W^{[i]})}{\log m}$ Linear regime: • Condensed regime:
 - Critical regime:

 $S_{W[i]} < 0$

 $S_{W[i]} > 0$

 $S_{W[i]} = 0$

Regime identification and separation

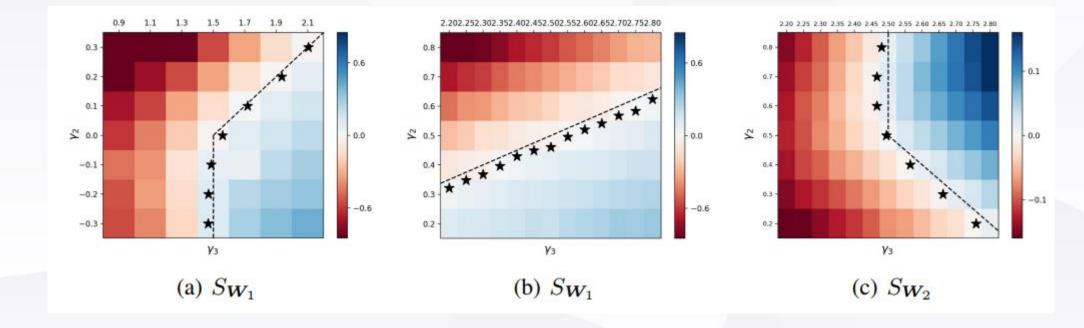
For synthetic data,

We quantify the growth of $RD(W^{[i]})$, i = 1,2, as $m \to \infty$, by defining,

$$S_{\boldsymbol{W}[i]} = \lim_{m \to \infty} \frac{\log \operatorname{RD}(\boldsymbol{W}^{[i]})}{\log m}$$

- Linear regime:
 - Condensed regime:
 - Critical regime:

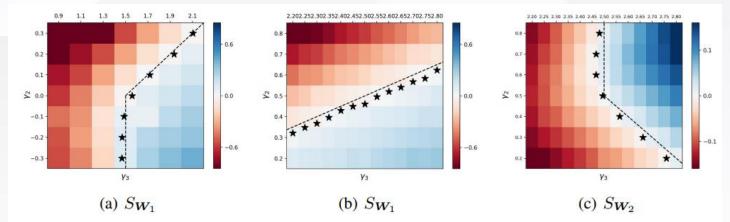
$$S_{W[i]} < 0$$
$$S_{W[i]} > 0$$
$$S_{W[i]} = 0$$



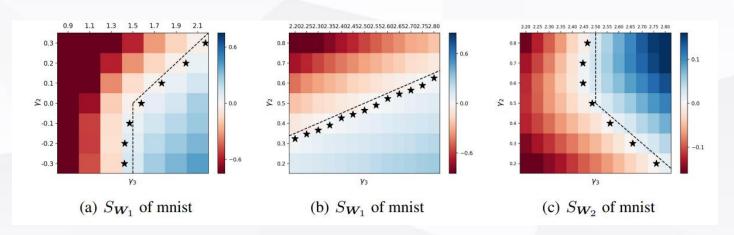
14

Regime identification and separation

For synthetic data,



For mnist data,



- Identify the condensation as non-linear
- Figure out the relation between the training dynamics and initialization
- Draw the phase diagram
- Reveal different training dynamics within a neural network

