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Contribution of the paper ' ‘l

We introduce a Nonlinear Diffusion Model
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Motivation: VAE vs. Diffusion Model "l
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Implicit Nonlinear Diffusion Model / ‘I

APPLIED ARTIFICIAL INTELLIGENCE LAB

2
aIp

8, e Tan W Ui ) 1
‘ ‘ b i b .:‘ - : A ::_:\.»‘ SaTRdR o Ea S v g ’P & ‘ ' ‘ a ‘ a ‘ a
O [Nonlinear Forward Path (data — noise)] m [Nonlinear Generative Path (noise — data)] ®,0
X0 X > ’

v

" X
dx? = f5(x?, 1) dt + Gg(x?, t) dw; \_T/éxff’ﬂ = [£5 — div(GyGE) — GoGTVhyse] df + Gy dN_0

4 )
Nonlinear Diffusion on Data Space

KAIST Copyright © 2022 by Dongjun Kim, Dept. of Industrial and Systems Engineering, KAIST



Implicit Nonlinear Diffusion Model / ‘I

APPLIED ARTIFICIAL INTELLIGENCE LAB

[Nonlinear Forward Path (data — noise)] m [Nonlinear Generative Path (noise — data)] ®,0
dx? = f5(x?, 1) dt + G (x?,t) dw; \_/éx? 9 = [fp — div(G¢GY) — GpGLVhysg] df + Gy da
1
Zd) dz = —55(75)2? dt + g(t) dw; :Gg)\ dz ={— SB()zf — g*()se(z?, t )} df + g(t) de; {0
0 [Linear Forward Path (latent — noise)] ~ T [Linear Generative Path (noise — latent)] 0
4 )
Nonlinear Diffusion on Data Space =
Linear Diffusion on Latent Space +
g W,

KAIST Copyright © 2022 by Dongjun Kim, Dept. of Industrial and Systems Engineering, KAIST



Implicit Nonlinear Diffusion Model / ‘I
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Implicit Nonlinear Diffusion Model / ‘I
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Implicit Nonlinear Diffusion Model
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Implicit Nonlinear Diffusion Model / ‘I
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Implicit Nonlinear Diffusion Model / ‘I
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Implicit Nonlinear Diffusion Model / ‘I
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Implicit Nonlinear Diffusion Model / ‘I
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Implicit Nonlinear Diffusion Model / ‘I
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Implicit Nonlinear Diffusion Model / ‘I
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Characteristics of INDM /WA

- INDM is the first continuous fully nonlinear diffusion model
INDM training is fast
INDM training is MLE
INDM sampling is robust
INDM enables image-to-image translation
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Characteristics of INDM /A

Fast Training
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Characteristics of INDM /WA

MLE Training
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Characteristics of INDM /A
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Characteristics of INDM /A

MLE Training
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Characteristics of INDM /A

Robust Sampling

—_
[e=)

o The sample quality of INDM is
- robust on the number of

, —— INDM discretization steps
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[ Robust Sampling ]
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Characteristics of INDM /WA

Robust Sampling

; Theorem. Ifp, is sample distribution
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Characteristics of INDM /A

Robust Sampling

; Theorem. Ifp, is sample distribution
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Characteristics of INDM /A
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Characteristics of INDM ' ‘l
Image-to-Image Translation

t=0.0 t=1.0
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Conditional Diffusion Model
‘ Or = 2 Diffusion Models

Dog < Cat
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Characteristics of INDM ' ‘l
Image-to-Image Translation
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Characteristics of INDM
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Image-to-Image Translation
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Data
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Summary of Contribution /A

INDM i1s a Nonlinear Diffusion Model
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Future Works of INDM /A

KAIST

The motivation of nonlinear diffusion in high-dimensional dataset is not
sufficient.

The invertible transformation is modeled by a flow network, which is the
speed/performance bottleneck after all.

The destined variable of INDM is not a standard Gaussian in general, and this
difference could arise a qualitatively different behavior.

The nonlinearity is purely subject to the optimization, and the behavior of the
trained forward diffusion is not investigated or controllable, so far.

The drift and volatility coefficients are highly entangled with a flow model of
which flexibility is potentially limited.

The scope of nonlinearity needs to be examined more clearly.

The nonlinear diffusion has not been tested for the higher-dimensional dataset,
such as ImageNet-256.

The flow seems not take any role other than colorization, and further research
on the role of flow network remains.

The model works better with the pre-training of linear diffusions.

The further analysis on why INDM fails to converge, if we use Glow-based
flows instead of ResNet-based flows, is left.

Whether or not the essential input information is retained longer than the
linear diffusion with INDM to make it use in the meaningful latent extraction.
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Thank you
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Implicit Nonlinear Diffusion Model "l

1
¢ dzf = —2B(t)af dt + g(t) dwr : @ @ =[ ~ 50058 — ¢ ()s0(ed, )] AT + (1) d (0
0 [Linear Forward Path (latent — noise)] @ [Linear Generative Path (noise — latent)] 0
4 )
Linear Diffusion on Latent Space
g W,
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Implicit Nonlinear Diffusion Model
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[Invertible Path]
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Invertible Path]

(data — latent) hg hy hg (latent — data)
Zg = h¢)(XO)¢ 1 & 1 h_l<zg)
dz; = _iﬂ(t)zt dt + g(t) dwy Z(p dzf = [ — §B(t)zf — gg(t)s(q(zf,t)} dt + g(t) dao,
o T >
[Linear Forward Path (latent — noise)] @ [Linear Generative Path (noise — latent)]

Linear Diffusion on Latent Space + Invertible Transformation
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Implicit Nonlinear Diffusion Model / ‘I
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[Nonlinear Forward Path (data — noise)] ® [Nonlinear Generative Path (noise — data)]

=

o x )
Ax® = £5(x?,1) At + Gg(x?,t) dw; x{? = [fp — div(G4GL) — GGLVhyse] df + Gy NG

Invertible Path] [Invertible Path]

(data - latent) h¢> h¢ h¢ (latent - data)
2§ = hg(xo) X7 = (2)
dZ? = —iﬁ(t)zfdti-g(t) dwy Z(b dz :[_ ~B(t)z) — g (t)sﬂ(ztat)} dt + g(t) de;
> T >
[Linear Forward Path (latent — noise)] ~ Tl [Linear Generative Path (noise — latent)]

Nonlinear Diffusion on Data Space =
Linear Diffusion on Latent Space + Invertible Transformation
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