What's the Harm? Sharp Bounds on the Fraction Negatively Affected by Treatment

Nathan Kallus
Cornell \& Netflix

A/B test a proposed change

■ Engaged / Bought / Re-employed / ...

Looks totally harmless © Is it tho?

Two equally possible scenarios

Null Effect
Current XP

New XP

50\% Engage 50\% Don't
No individual negatively affected

Strong Individual Effect

50\% individuals negatively affected

So... What's the Harm?

- Fraction Negatively Affected: FNA $=\mathbb{P}(Y(1)<Y(0))$
- Crucial for judging a change's impact on downstream behavior, fairness, operations
- Unlike ATE $=\mathbb{E}[Y(1)-Y(0)]$, FNA is not identifiable - No amount of data, even if experimental, will allow us to pin FNA down
- Can still hope to partially identify, i.e., give bounds
- But want informative bounds
- i.e., not [0\%, 50\%]

This paper

- Sharp bounds (i.e., tightest possible) on FNA with covariate information on units
- Also bounds on related quantities
- Estimation \& inference on bounds, which involve complex functions like the conditional avg treatment effect (CATE)
- Locally robust: fast convergence rates and calibrated confidence intervals even when these functions are estimated slowly by ML blackboxes
- Doubly valid: even if CATE (\& similar) is misspecified, get 2 chances at valid (albeit conservative) bounds
- So, gives credible inference, can support addressing harm:
- Focusing on bounds accounts for unknowables
- Robustness ensure reliability under estimation errors

