What's the Harm? Sharp Bounds on the Fraction Negatively Affected by Treatment

Nathan Kallus

Cornell & Netflix

A/B test a proposed change

Engaged / Bought / Re-employed / ...

Looks totally harmless 😇 Is it tho? 👿

Two equally possible scenarios

Null Effect

Current XF

50% Engage 50% Don't

Strong Individual Effect

50% Engage 50% Don't

So... What's the Harm?

- Fraction Negatively Affected: $FNA = \mathbb{P}(Y(1) < Y(0))$
 - Crucial for judging a change's impact on downstream behavior, fairness, operations
- Unlike ATE = $\mathbb{E}[Y(1) Y(0)]$, FNA is *not* identifiable
 - No amount of data, even if experimental, will allow us to pin FNA down
- Can still hope to *partially* identify, *i.e.*, give bounds
 - But want informative bounds
 - *i.e.*, not [0%, 50%]

This paper

- Sharp bounds (i.e., tightest possible) on FNA with covariate information on units
 - Also bounds on related quantities
- Estimation & inference on bounds, which involve complex functions like the conditional avg treatment effect (CATE)
 - Locally robust: fast convergence rates and calibrated confidence intervals even when these functions are estimated slowly by ML blackboxes
 - **Doubly valid**: even if CATE (& similar) is misspecified, get 2 chances at valid (albeit conservative) bounds
- So, gives credible inference, can support addressing harm:
 - Focusing on bounds accounts for unknowables
 - Robustness ensure reliability under estimation errors