Precise Learning Curves and Higher-Order Scaling Limits for Dot Product Kernel Regression Lechao Xiao¹, Hong Hu², Theodor Misiakiewicz³, Yue M. Lu⁴ and Jeffrey Pennington¹

xlc@google.com, huhong@wharton.upenn.edu, misiakie@stanford.edu, yuelu@seas.harvard.edu, jpennin@google.com 1. Google Research, Brain Team, 2. University of Pennsylvania, 3. Stanford University, 4. Harvard University

ABSTRACT

We present an *exact* analysis of learning performance of kernel ridge regression (KRR) in the *polynomial scaling* regime.

Our main contributions:

• Precise formula for the sample-wise KRR learning curves for dot-product kernel

 Characterizations of limiting empirical spectrum of the dot-product matrices

• An extension of the above results to the convolutional kernel

MULTI-PHASE LEARNING CURVE

Hierarchical Learning Process of KRR:

Top figure: Test error as a function of $\log n / \log d$, where *n* is the sample size and *d* is the input dimension. The test error appears to remain unchanged when $d^{k-1} \ll d^{k-1}$ $n \ll d^k$, for $k \in \mathbb{Z}^+$, while transitions occur at $n \asymp d^k$.

Bottom figure: Zoomed-in views of the test error within each transition region, corresponding to $n \asymp d^k$ for k =1, 2, 3.

The learning curves exhibit delicate non-monotonic behavior at different polynomial scaling regimes.

Challenge: Previous works analyzed test error when $d^{k-1} \ll n \ll d^k$, but the precise characterization of transitions among different phases is left unaddressed. The main challenge lies in the *non-linearity* of kernel function.

Test Error: The performance of KRR can be captured by the test error:

Label function: The label function *f* has the following spectral decomposition:

where the eigenfunction $Y_{kj}(x)$ is the *j*th order-*k* spherical harmonics, μ_{kj} are the eigenvalues and N(d,k) is the total number of order-*k* spherical harmonics.

For k < r, $\{\mu_{kj}\}$ are fixed and for $k \ge r$, $\{\mu_{kj}\}$ are random satisfying

and h(t) has the following spectral decomposition:

KERNEL RIDGE REGRESSION (KRR)

Input: A collection of i.i.d. training samples:

$$\{\boldsymbol{x}_i, y_i\}_{i=1}^n \overset{i.i.d.}{\sim} \mathcal{P}$$

Method: Learn a function $f : \mathbb{R}^d \mapsto \mathbb{R}$ in a reproducing kernel Hilbert space (RKHS) by solving:

$$\hat{f} = \underset{f}{\operatorname{argmin}} \sum_{i=1}^{n} [y_i - f(x_i)]^2 + \lambda \|f\|_K^2.$$
(1)

where $\|\cdot\|_{K}$ is the RKHS norm associated with kernel function $K(\cdot, \cdot)$.

$$\operatorname{Err} = \mathbb{E}_{\operatorname{new}} [\mathbb{E}(y_{\operatorname{new}} \mid \boldsymbol{x}_{\operatorname{new}}) - \hat{f}(\boldsymbol{x}_{\operatorname{new}})]^2,$$

where $(x_{new}, y_{new}) \sim \mathcal{P}$ is an independent test sample.

A HIGH-DIMENSIONAL MODEL

Polynomial Scaling Regime: We consider the setting when $d \to \infty$, while for some $r \in \mathbb{Z}^+$,

$$\frac{\mathcal{N}(d,r)}{n} \to \alpha_r \in (0,\infty).$$

Data: We consider

$$\boldsymbol{x}_i \stackrel{i.i.d.}{\sim} \tau_{d-1}$$
 and $y_i = f(\boldsymbol{x}_i) + \epsilon_i$

where τ_{d-1} is the uniform distribution over *d*-dimensional unit sphere \mathcal{S}^{d-1} and $\epsilon \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_{\epsilon}^2)$.

$$f(x) = \sum_{k \ge 0} \sum_{j=1}^{N(d,k)} \mu_{kj} Y_{kj}(x)$$
(2)

$$\mathbb{E}(\mu_{kj}\mu_{k'j'}) = \frac{\hat{f}_k^2 \mathbb{1}_{kk'} \mathbb{1}_{jj'}}{N(d,k)}$$

Kernel: We consider dot-product kernel on S^{d-1} :

$$K(\boldsymbol{x}, \boldsymbol{x}') = h(\boldsymbol{x}^{\mathsf{T}} \boldsymbol{x}')$$

$$h(t) = \sum_{k=0}^{\infty} \hat{h}_k P_k(t)$$

where $P_k(t)$ is the order-k Legendre polynomials.

Define

and

where μ_{α} is the PDF of Marchenko–Pastur distribution with ratio α and ξ is defined as:

and

BIAS-VARIANCE TRADE-OFF

Variance: All the high-frequency modes play the roles as the *additive noise*, while all the low-frequency modes do not contribute to the variance.

Non-monoticity of learning curves: The bias is monotonically *decreasing*, while the variance exhibits *multiple de*scents.

 $\hat{F}_{\geq 2}^2$ $F_{\geq 4}^2$

(3)

PRECISE FORMULA

$$\chi_B(\alpha) = \int (1+\xi t)^{-2} \mu_\alpha(t) dt$$

$$\chi_V(\alpha) = \alpha \xi^2 \int t (1+\xi t)^{-2} \mu_\alpha(t) dt$$

$$\xi \coloneqq \frac{\hat{h}_r^2}{\alpha(\lambda + \hat{h}_{>r}^2)}$$

Asymptotic bias and variance: Define the asymptotic bias and variance associated with the rth order component as:

$$B_r(\alpha_r) = \chi_B(\alpha_r)\hat{f}_r^2 + \hat{f}_{>r}^2$$

$$V_r(\alpha_r) = \chi_V(\alpha_r)(\hat{f}_{>r}^2 + \sigma_\epsilon^2)$$

Theorem 1. Under the main assumptions of the paper, the test error satisfies:

$$Err \xrightarrow{\mathbb{P}} B_r(\alpha_r) + V_r(\alpha_r).$$
 (4)

Bias: KRR *perfectly* learns all low-frequency (k < r) modes; *partially* learns the critical frequency (k = r) modes; while *does not* learn any high-frequency mode (k > r).

SPECTRUM OF KERNEL MATRIX

The key of proof of Theorem 1 is computing the limiting Stieltjes transform of empirical spectral distribution of the *r*th component of the kernel matrix:

where $\gamma > 0$ and $\mathbf{K}_r = \frac{1}{N(d,r)} \mathbf{Y}_r(\mathbf{X}) \mathbf{Y}_r(\mathbf{X}^{\top})$.

Theorem 2. Under the main assumption, the empirical spectrum of K_r converges in distribution to the Marchenko-Pastur distribution with ratio $\alpha = \alpha_r$.

Gaussian Equivalence: The limiting spectrum of K_r remains unchanged, if $Y_r(X)$ is replaced with an i.i.d Gaussian matrix *G* of same size.

CONVOLUTIONAL KERNEL

- kernel.

One-layer CNN Kernel:

T.M. was supported by NSF through award DMS-2031883 and the Simons Foundation through Award 814639 for the Collaboration on the Theoretical Foundations of Deep Learning. T.M. also acknowledge the NSF grant CCF-2006489 and the ONR grant N00014-18-1-2729. The work of Yue M. Lu is supported by a Harvard FAS Dean's competitive fund award for promising scholarship, and by the US National Science Foundation under grant CCF-1910410.

$$R(\gamma) = \frac{1}{n} \operatorname{Tr}(\gamma \boldsymbol{I} + \boldsymbol{K}_r)^{-1}$$

• Similar results can be obtained for convolutional

• The eigenstructure of convolutional kernel matrix not only depends on the order of eigenfunctions but also on the topologies of neural network.