A Theory of PAC Learnability under Transformation Invariances

Han Shao, Omar Montasser and Avrim Blum

TTIC

November 6, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction

- (Group) transformation invariances are present in many real-world problems. E.g.,
 - Image classification is usually invariant to rotation/flip/color transformation.
 - Syntax parsing is invariant to exchange of noun phrases in a sentence.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction

- (Group) transformation invariances are present in many real-world problems. E.g.,
 - Image classification is usually invariant to rotation/flip/color transformation.
 - Syntax parsing is invariant to exchange of noun phrases in a sentence.

- Data augmentation is one commonly used technique.
 - Add the transformed data into the training set.
 - Trains a model on the augmented data.

Introduction

- (Group) transformation invariances are present in many real-world problems. E.g.,
 - Image classification is usually invariant to rotation/flip/color transformation.
 - Syntax parsing is invariant to exchange of noun phrases in a sentence.
- Data augmentation is one commonly used technique.
 - Add the transformed data into the training set.
 - Trains a model on the augmented data.

How does data augmentation perform theoretically? What is the optimal algorithm in terms of sample complexity under transformation invariances?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Invariantly realizable setting: $\exists h^* \in \mathcal{H}$ s.t. h^* can correctly classify not only the natural data but also the transformed data.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Invariantly realizable setting: $\exists h^* \in \mathcal{H}$ s.t. h^* can correctly classify not only the natural data but also the transformed data.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Invariantly realizable setting: $\exists h^* \in \mathcal{H}$ s.t. h^* can correctly classify not only the natural data but also the transformed data.
 - DA helps but is not optimal. The sample complexity of DA is characterized by $VC_{ao}(\mathcal{H}, \mathcal{G})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Invariantly realizable setting: $\exists h^* \in \mathcal{H}$ s.t. h^* can correctly classify not only the natural data but also the transformed data.
 - DA helps but is not optimal. The sample complexity of DA is characterized by $VC_{ao}(\mathcal{H}, \mathcal{G})$.
 - The optimal sample complexity is characterized by $VC_o(\mathcal{H},\mathcal{G})$.

- Invariantly realizable setting: $\exists h^* \in \mathcal{H}$ s.t. h^* can correctly classify not only the natural data but also the transformed data.
 - DA helps but is not optimal. The sample complexity of DA is characterized by $VC_{ao}(\mathcal{H}, \mathcal{G})$.
 - The optimal sample complexity is characterized by $\mathrm{VC}_o(\mathcal{H},\mathcal{G}).$

• Relaxed realizable setting: $\exists h^* \in \mathcal{H}$ such h^* has zero error over the support of the data distribution.

- Invariantly realizable setting: ∃h* ∈ H s.t. h* can correctly classify not only the natural data but also the transformed data.
 - DA helps but is not optimal. The sample complexity of DA is characterized by $VC_{ao}(\mathcal{H}, \mathcal{G})$.
 - The optimal sample complexity is characterized by $\mathrm{VC}_o(\mathcal{H},\mathcal{G}).$
- **Relaxed realizable setting:** ∃*h*^{*} ∈ *H* such *h*^{*} has zero error over the support of the data distribution.

- Invariantly realizable setting: ∃h* ∈ H s.t. h* can correctly classify not only the natural data but also the transformed data.
 - DA helps but is not optimal. The sample complexity of DA is characterized by $VC_{ao}(\mathcal{H}, \mathcal{G})$.
 - The optimal sample complexity is characterized by $VC_o(\mathcal{H},\mathcal{G})$.
- **Relaxed realizable setting:** ∃*h*^{*} ∈ *H* such *h*^{*} has zero error over the support of the data distribution.
 - DA can hurt. Any algorithm not distinguishing the original data from the transformed data hurt. The optimal sample complexity of this family is characterized by $\mu(\mathcal{H},\mathcal{G})$.

- Invariantly realizable setting: ∃h* ∈ H s.t. h* can correctly classify not only the natural data but also the transformed data.
 - DA helps but is not optimal. The sample complexity of DA is characterized by $VC_{ao}(\mathcal{H}, \mathcal{G})$.
 - The optimal sample complexity is characterized by $VC_o(\mathcal{H},\mathcal{G})$.
- **Relaxed realizable setting:** ∃*h*^{*} ∈ *H* such *h*^{*} has zero error over the support of the data distribution.
 - DA can hurt. Any algorithm not distinguishing the original data from the transformed data hurt. The optimal sample complexity of this family is characterized by $\mu(\mathcal{H},\mathcal{G})$.

• The optimal sample complexity is characterized by $VC_{ao}(\mathcal{H}, \mathcal{G}).$

- Invariantly realizable setting: $\exists h^* \in \mathcal{H}$ s.t. h^* can correctly classify not only the natural data but also the transformed data.
 - DA helps but is not optimal. The sample complexity of DA is characterized by $VC_{ao}(\mathcal{H}, \mathcal{G})$.
 - $\bullet\,$ The optimal sample complexity is characterized by ${\rm VC}_o({\cal H},{\cal G}).$
- **Relaxed realizable setting:** ∃*h*^{*} ∈ *H* such *h*^{*} has zero error over the support of the data distribution.
 - DA can hurt. Any algorithm not distinguishing the original data from the transformed data hurt. The optimal sample complexity of this family is characterized by $\mu(\mathcal{H},\mathcal{G})$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- The optimal sample complexity is characterized by $\mathrm{VC}_{\mathrm{ao}}(\mathcal{H},\mathcal{G}).$
- Agnostic setting
 - The optimal sample complexity is characterized by $\mathrm{VC}_{\mathrm{ao}}(\mathcal{H},\mathcal{G}).$

(日)

э

The natural data only has upright dogs and upside-down cats or only has upright cats and upside-down dogs.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

The natural data only has upright dogs and upside-down cats or only has upright cats and upside-down dogs.

イロト 不得 トイヨト イヨト

э

The natural data only has upright dogs and upside-down cats or only has upright cats and upside-down dogs.

Distinguishing between original and transformed data is important!

Come to our poster for more results!