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Motivation

Deep Neural Networks (DNNs) can approximate arbitrarily complex
functions.

What makes them so effective?

How does data geometry affect DNNs ability to approximate these
functions?

Can we derive theoretical results that can be corroborated empirically,
to understand DNNs approximation capacity?
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Linear Regions as a Proxy for Approximation Capacity

We consider DNNs with piece wise linear activation function (e.g. ReLU).

σ(x) = max(0, x)

DNNs divide the input space into pieces with it computing a single linear
function on each piece.

Definition

The set A ∈ Rnin is defined to be a linear region of a neural network F if it
is the maximal connected such set where F behaves as a linear function.

Counting the number of linear regions tells us ”how non linear a function
is?”
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How many Linear Regions?

Figure: A two-dimensional slice through the 784-dimensional input space of
vectorized MNIST, as represented by a fully-connected ReLU network with three
hidden layers of width 64 each (Figure by Hanin and Rolnick, 2019).
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What is Data Geometry?

The Manifold Hypothesis

Natural data forms lower-dimensional manifolds in its embedding space.

Figure: 2D Manifolds embedded in 3D spaces: Sphere, Torus, and Cylinder
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The Manifold Hypothesis

Figure: A visualization of how the 2D surface, here represented by a 2-torus, is
embedded in a larger input space, R3. Suppose each point corresponds to an
image of the face on this 2-torus. We can chart two curves: one straight line
cutting across the 3D space and another curve that stays on the torus.
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The Manifold Correction

Figure: Linear regions of a DNN over a one-dimensional manifold embedded in a
two-dimensional space. Each color uniquely represents a linear region.
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Our Theoretical Results: Stronger Bounds

Theorem

Theorem 1: For data sampled uniformly from a compact and measurable
m dimensional manifold M:

E
[volm−1(Boundary regions in manifold M)

volm(M)

]
≤ 2#neuronsCgradCbiasCM ,

where Cgrad depends on the gradient of the individual neurons w.r.t the
input, CM the geometry of M, and Cbias on the distribution of biases.
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Our Theoretical Results: Stronger Bounds

Theorem

Theorem 2:For any point, x , chosen randomly from M, we have:

E[distanceM(x ,BF ∩M)] ≥
CM,κ

CgradCbiasCM#neurons
,

where CM,κ depends on the scalar curvature, the input dimension and the
dimensionality of the manifold M. The function distanceM is the distance
on the manifold M.
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Empirical Observations: Supervised Learning

Consider two different settings where data sampled from two different
one-dimensional manifolds with different geometries embedded in R2:
Circle and Tractrix.

Figure: 1-D data manifolds embedded in 2D space: Circle and Tractrix
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Empirical Results

Graphs for Tractrix (blue) and Sphere (orange). We see that the number
of linear regions stays close to the number of neurons (26). The difference
in number of regions is attributed to different geometries.
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Empirical Results

Figure: As we increase nin, for a sphere, while keeping m constant at 1 we notice
that the number of linear regions and the average distance to the linear boundary
stay almost constant.
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Figure: Shirana Shahbazi, [Composition-45-2011]
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