

RORL: Robust Offline Reinforcement Learning via Conservative Smoothing

Rui Yang¹*, Chenjia Bai²*, Xiaoteng Ma³, Zhaoran Wang⁴, Chongjie Zhang³, Lei Han⁵

¹HKUST, ²Shanghai AI Laboratory, ³Tsinghua University, ⁴Northwestern University, ⁵Tencent Robotics X

¹HKUST, ²Shanghai AI Laboratory, ³Tsinghua University,

⁴Northwestern University, ⁵Tencent Robotics X

Background

- > Online interaction is costly and even prohibitive in many real-world scenarios
- Robustness is crucial for real-world scenarios with sensor/actuator errors and model mismatch

> Can we learn robust policy from offline data?

Levine S, et al. Offline reinforcement learning: Tutorial, review, and perspectives on open problems. arXiv preprint. Huan Zhang, et al. Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations. NeurIPS 2020.

Background

Offline RL

> PBRL: underestimating values of OOD actions according to the uncertainty estimation

$$\begin{split} \mathcal{L}_{\text{critic}} &= \widehat{\mathbb{E}}_{(s,a,r,s')\sim\mathcal{D}_{\text{in}}} \big[(\widehat{\mathcal{T}}^{\text{in}}Q^k - Q^k)^2 \big] + \widehat{\mathbb{E}}_{s^{\text{ood}}\sim\mathcal{D}_{\text{in}},a^{\text{ood}}\sim\pi} \big[(\widehat{\mathcal{T}}^{\text{ood}}Q^k - Q^k)^2 \big], \\ & \widehat{\mathcal{T}}^{\text{ood}}Q^k_{\theta}(s^{\text{ood}},a^{\text{ood}}) \coloneqq Q^k_{\theta}(s^{\text{ood}},a^{\text{ood}}) - \beta_{\text{ood}} \mathcal{U}_{\theta}(s^{\text{ood}},a^{\text{ood}}) \,, \\ & \mathcal{U}(s,a) \coloneqq \operatorname{Std}(Q^k(s,a)) = \sqrt{\frac{1}{K}\sum_{k=1}^{K} \left(Q^k(s,a) - \bar{Q}(s,a)\right)^2}. \end{split}$$

> SAC-N: increasing the number of Q networks of clipped double Q trick

$$\min_{\phi_{i}} \mathbb{E}_{\mathbf{s},\mathbf{a},\mathbf{s}'\sim\mathcal{D}} \left[\left(Q_{\phi_{i}}(\mathbf{s},\mathbf{a}) - \left(r(\mathbf{s},\mathbf{a}) + \gamma \mathbb{E}_{\mathbf{a}'\sim\pi_{\theta}}(\cdot|\mathbf{s}') \left[\min_{j=1,...,N} Q_{\phi_{j}'}\left(\mathbf{s}',\mathbf{a}'\right) - \beta \log \pi_{\theta}\left(\mathbf{a}'\mid\mathbf{s}'\right) \right] \right) \right)^{2} \right] \\
\max_{\theta} \mathbb{E}_{\mathbf{s}\sim\mathcal{D},\mathbf{a}\sim\pi_{\theta}}(\cdot|\mathbf{s}) \left[\min_{j=1,...,N} Q_{\phi_{j}}(\mathbf{s},\mathbf{a}) - \beta \log \pi_{\theta}\left(\mathbf{a}\mid\mathbf{s}\right) \right],$$
(2)

Bai C, et al. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. ICLR, 2022. An G, et al. Uncertainty-based offline reinforcement learning with diversified q-ensemble. NeurIPS, 2021.

Background

Robust RL under adversarial attack

Perturbation elements: observation

Motivating Example

Smoothing for value-based offline RL

> <u>We need to trade off robustness and conservatism</u>

Motivating Example

Visualization for CQL

- CQL is susceptible to adversarial noise
- > CQL-Smooth is more robust
- Robust offline RL needs to explicitly tackle potential OOD states perturbed by the attacker

Robust Q function

$$\min_{\phi_i} \mathbb{E}_{s,a,r,s'\sim\mathcal{D}} \Big[\big(\widehat{\mathcal{T}} Q_{\phi_i}(s,a) - Q_{\phi_i}(s,a) \big)^2 + \beta_{\mathsf{Q}} \mathcal{L}_{\mathrm{smooth}}(s,a;\phi_i) + \beta_{\mathrm{ood}} \mathcal{L}_{\mathrm{ood}}(s;\phi_i) \Big],$$

> TD loss + smooth loss for neighbor states + underestimation for OOD states

 $\succ \mathcal{L}_{smooth}$ is defined by:

$$egin{aligned} \mathcal{L}_{ ext{smooth}}(s,a;\phi_i) &= \max_{\hat{s}\in\mathbb{B}_d(s,\epsilon)} \mathcal{L}ig(Q_{\phi_i}(\hat{s},a),Q_{\phi_i}(s,a)ig) \ \mathcal{L}ig(Q_{\phi_i}(\hat{s},a),Q_{\phi_i}(s,a)ig) &= (1- au)\delta(s,\hat{s},a)_+^2 + au\delta(s,\hat{s},a)_-^2, \ \delta(s,\hat{s},a) &= Q_{\phi_i}(\hat{s},a) - Q_{\phi_i}(s,a) \end{aligned}$$

Alleviate the overestimation of OOD states

Robust Q function

$$\min_{\phi_i} \mathbb{E}_{s,a,r,s'\sim\mathcal{D}} \Big[\big(\widehat{\mathcal{T}} Q_{\phi_i}(s,a) - Q_{\phi_i}(s,a) \big)^2 + \beta_Q \mathcal{L}_{\text{smooth}}(s,a;\phi_i) + \beta_{\text{ood}} \mathcal{L}_{\text{ood}}(s;\phi_i) \Big],$$

 $\succ \mathcal{L}_{ood}$ is defined by:

$$\mathcal{L}_{\text{ood}}(s;\phi_i) = \mathbb{E}_{\hat{s} \sim \mathbb{B}_d(s,\epsilon), \hat{a} \sim \pi_\theta(\hat{s})} \left(\widehat{\mathcal{T}}_{\text{ood}} Q_{\phi_i}(\hat{s}, \hat{a}) - Q_{\phi_i}(\hat{s}, \hat{a}) \right)^2$$
$$\widehat{\mathcal{T}}_{\text{ood}} Q_{\phi_i}(\hat{s}, \hat{a}) := Q_{\phi_i}(\hat{s}, \hat{a}) - \lambda u(\hat{s}, \hat{a})$$
$$u(\hat{s}, \hat{a})$$

$$u(\hat{s}, \hat{a}) := \sqrt{\frac{1}{K} \sum_{k=1}^{K} \left(Q_{\phi_i}(\hat{s}, \hat{a}) - \bar{Q}_{\phi}(\hat{s}, \hat{a}) \right)^2}$$

Robust Policy

> Based on the robust and conservative value functions, we simply smooth the policy as

$$\min_{\theta} \left[\mathbb{E}_{s \sim \mathcal{D}, a \sim \pi_{\theta}(\cdot|s)} \left[-\min_{j=1, \dots, K} Q_{\phi_j}(s, a) + \alpha \log \pi_{\theta}(a|s) + \beta_{\mathrm{P}} \max_{\hat{s} \in \mathbb{B}_d(s, \epsilon)} D_{\mathrm{J}} \left(\pi_{\theta}(\cdot|s) \| \pi_{\theta}(\cdot|\hat{s}) \right) \right] \right]$$

$$D_{\rm J}(P||Q) = \frac{1}{2} [D_{\rm KL}(P||Q) + D_{\rm KL}(Q||P)]$$

Overall Framework

What are the Advantages of RORL over Previous Offline RL Algorithms?

Performance improves on clean environments

> More robust against adversarial perturbation

Benchmark Results

RORL only uses 10 ensemble Q networks to outperform the SOTA method EDAC with $10 \sim 50$ Q networks!

Task Name	BC	CQL	PBRL	SAC-10 (Reproduced)	EDAC (Paper)	EDAC-10 (Reproduced)	RORL (Ours)
halfcheetah-random	2.2 ± 0.0	31.3±3.5	$11.0{\pm}5.8$	29.0 ±1.5	$28.4{\pm}1.0$	13.4 ± 1.1	$28.5 {\pm} 0.8$
halfcheetah-medium	43.2±0.6	46.9 ± 0.4	57.9 ± 1.5	64.9 ± 1.3	65.9±0.6	64.1 ± 1.1	66.8±0.7
halfcheetah-medium-expert	44.0±1.6	$95.0{\pm}1.4$	92.3 ± 1.1	107.1 ± 2.0	106.3 ± 1.9	107.2 ± 1.0	$107.8{\pm}1.1$
halfcheetah-medium-replay	37.6±2.1	45.3 ± 0.3	45.1 ± 8.0	$63.2{\pm}0.6$	61.3 ± 1.9	60.1 ± 0.3	61.9±1.5
halfcheetah-expert	91.8±1.5	97.3 ± 1.1	$92.4{\pm}1.7$	$104.9 {\pm} 0.9$	106.8±3.4	$104.0 {\pm} 0.8$	$105.2{\pm}0.7$
hopper-random	3.7±0.6	5.3±0.6	26.8±9.3	25.9±9.6	25.3±10.4	16.9 ± 10.1	31.4±0.1
hopper-medium	54.1±3.8	61.9 ± 6.4	75.3 ± 31.2	$0.8{\pm}0.2$	$101.6 {\pm} 0.6$	$103.6{\pm}0.2$	$104.8{\pm}0.1$
hopper-medium-expert	53.9±4.7	96.9 ± 15.1	$110.8{\pm}0.8$	6.1 ± 7.7	110.7 ± 0.1	58.1 ± 22.3	$112.7{\pm}0.2$
hopper-medium-replay	16.6 ± 4.8	86.3±7.3	100.6 ± 1.0	$102.9 {\pm} 0.9$	$101.0 {\pm} 0.5$	$102.8 {\pm} 0.3$	$102.8{\pm}0.5$
hopper-expert	107.7±9.7	106.5 ± 9.1	$110.5{\pm}0.4$	$1.1{\pm}0.5$	110.1 ± 0.1	77.0 ± 43.9	$112.8{\pm}0.2$
walker2d-random	1.3±0.1	5.4±1.7	8.1±4.4	1.5±1.1	16.6±7.0	6.7±8.8	21.4±0.2
walker2d-medium	70.9 ± 11.0	79.5 ± 3.2	$89.6 {\pm} 0.7$	46.7 ± 45.3	92.5±0.8	87.6 ± 11.0	$102.4{\pm}1.4$
walker2d-medium-expert	90.1±13.2	109.1 ± 0.2	110.1 ± 0.3	116.7±1.9	114.7 ± 0.9	$115.4{\pm}0.5$	121.2 ± 1.5
walker2d-medium-replay	20.3±9.8	$76.8 {\pm} 10.0$	77.7 ± 14.5	89.6±3.1	87.1±2.3	94.0±1.2	$\textbf{90.4} \pm \textbf{0.5}$
walker2d-expert	108.7 ± 0.2	109.3 ± 0.1	$108.3 {\pm} 0.3$	$1.2{\pm}0.7$	115.1±1.9	57.8 ± 55.7	$\textbf{115.4} \pm \textbf{0.5}$
Average	49.7	70.2	74.4	50.8	82.9	71.2	85.7
Total	746.1	1052.8	1116.5	761.6	1243.4	1068.7	1285.7

Table 1: Normalized average returns on Gym tasks, averaged over 4 random seeds. Part of the results are reported in the EDAC paper. Top two scores for each task are highlighted.

Adversarial Attack

- Attack Methods
 - Random: uniformly sampling perturbed states in an l_{∞} ball of norm ϵ

• Action diff:
$$\min_{\hat{s} \in \mathbb{B}_d(s,\epsilon)} - D_{\mathrm{J}} \big(\pi_{\theta}(\cdot|s) \| \pi_{\theta}(\cdot|\hat{s}) \big)$$

• Min Q:
$$\min_{\hat{s} \in \mathbb{B}_d(s,\epsilon)} Q(s,\pi_\theta(\hat{s}))$$

- Optimization
 - Zero-order: sampling 50 states and finding the minimum
 - Mixed-order: sampling 20 initial states and performing gradient decent for 10 steps with a step size of $\frac{1}{10}\epsilon$ for each initial state, and selecting the minimum

Adversarial Attack: robustness under adversarial attack

14

Adversarial Attack: ablations of attack experiments

>Each component contributes to the performance under different types of attack

>The OOD loss and policy smoothing loss are more effective against attacks

Figure 11: Ablations of different components against in the adversarial experiments.

Theoretical Analysis

RORL enjoys better property in Linear MDPs than PBRL

$$egin{aligned} \widetilde{w}_t &= \min_{w \in \mathcal{R}^d} \Big[\sum_{i=1}^m ig(y_t^i - Q_w(s_t^i, a_t^i)ig)^2 + \sum_{i=1}^m rac{1}{|\mathbb{B}_d(s_t^i, \epsilon)|} \sum_{\hat{s}_t^i \in \mathcal{D}_{ ext{ood}}(s_t^i)} ig(Q_w(s_t^i, a_t^i) - Q_w(\hat{s}_t^i, a_t^i)ig)^2 + \sum_{(\hat{s}, \hat{a}, \hat{y}) \sim \mathcal{D}_{ ext{ood}}} ig(\hat{y} - Q_w(\hat{s}, \hat{a})ig)^2 \Big], \end{aligned}$$

Theorem 2. For all the OOD datapoint $(\hat{s}, \hat{a}, \hat{y}) \in \mathcal{D}_{ood}$, if we set $\hat{y} = \mathcal{T}V_{t+1}(s^{ood}, a^{ood})$, it then holds for $\beta_t = \mathcal{O}(T \cdot \sqrt{d} \cdot \log(T/\xi))$ that

$$\Gamma_t^{\rm lcb}(s_t, a_t) = \beta_t \left[\phi(s_t, a_t)^\top \widetilde{\Lambda}_t^{-1} \phi(s_t, a_t) \right]^{1/2}$$
(18)

forms a valid ξ -uncertainty quantifier, where $\widetilde{\Lambda}_t$ is the covariance matrix of RORL.

Corollary (Corollary 2 restate). Under the same conditions as Theorem 2, it holds that SubOpt $(\pi^*, \hat{\pi}) \leq \sum_{t=1}^T \mathbb{E}_{\pi^*} \left[\Gamma_t^{\text{lcb}}(s_t, a_t) \right] < \sum_{t=1}^T \mathbb{E}_{\pi^*} \left[\Gamma_t^{\text{lcb}_\text{PBRL}}(s_t, a_t) \right].$

Conclusion

- > We propose RORL to learn robust RL policies from offline datasets
- Specifically, we smooth the policy and the value functions of the perturbed states while adaptively underestimating their values based on uncertainty
- RORL outperforms current SOTA algorithm with fewer ensemble Q networks and is considerably robust to different types of adversarial perturbations