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Ø Online interaction is costly and even prohibitive in many real-world scenarios

Ø Robustness is crucial for real-world scenarios with sensor/actuator errors and model 
mismatch

Ø Can we learn robust policy from offline data?

Levine S, et al. Offline reinforcement learning: Tutorial, review, and perspectives on open problems. arXiv preprint.
Huan Zhang, et al. Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations. NeurIPS 2020.
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Offline RL

Ø PBRL: underestimating values of OOD actions according to the uncertainty estimation

Ø SAC-N: increasing the number of Q networks of clipped double Q trick

Bai C, et al. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. ICLR, 2022.
An G, et al. Uncertainty-based offline reinforcement learning with diversified q-ensemble. NeurIPS, 2021.
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Robust RL under adversarial attack

Ø Perturbation elements: observation

Huan Zhang, et al. Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations. NeurIPS 2020.
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Smoothing for value-based offline RL

Ø We need to trade off robustness and conservatism

Drastic 
change
between 
neighboring 
states

Possible
overestimation
on OOD states



Motivating Example

6

Visualization for CQL

Ø CQL is susceptible to adversarial noise
Ø CQL-Smooth  is more robust
Ø Robust offline RL needs to explicitly tackle potential OOD states perturbed by the 

attacker

Perturbation scale, 𝑙! norm
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Robust Q function

Ø TD loss + smooth loss for neighbor states + underestimation for OOD states

Øℒ!"##$% is defined by:

Alleviate the overestimation of OOD states
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Robust Q function

Ø ℒ##& is defined by:
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Robust Policy

Ø Based on the robust and conservative value functions, we simply smooth the policy as
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Overall Framework

Robust Q function Robust Policy

Policy

min

Policy smooth 
regularization



Experiments

11

What are the Advantages of RORL over Previous Offline RL Algorithms?

Ø Performance improves on clean environments

Ø More robust against adversarial perturbation
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Benchmark Results
RORL only uses 10 ensemble Q networks to outperform the SOTA method EDAC with 10~50 Q networks!
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Adversarial Attack

Ø Attack Methods

• Random: uniformly sampling perturbed states in an 𝑙! ball of norm 𝜖

• Action diff: 

• Min Q: 

Ø Optimization
• Zero-order: sampling 50 states and finding the minimum

• Mixed-order: sampling 20 initial states and performing gradient decent for 10 steps with a step 
size of "

"#
𝜖 for each initial state, and selecting the minimum 
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Adversarial Attack: robustness under adversarial attack
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Adversarial Attack: ablations of attack experiments

ØEach component contributes to the performance under different types of attack

ØThe OOD loss and policy smoothing loss are more effective against attacks
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RORL enjoys better property in Linear MDPs than PBRL 
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Ø We propose RORL to learn robust RL policies from offline datasets

Ø Specifically, we smooth the policy and the value functions of the perturbed states while 
adaptively underestimating their values based on uncertainty

Ø RORL outperforms current SOTA algorithm with fewer ensemble Q networks and is 
considerably robust to different types of adversarial perturbations


