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Robustness of Vision Transformers

- Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In ICLR, 2020.
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pAdversarial Example
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pBlack-box Attacks
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• Structural differences between ViT and CNN models lead to poor cross structure transferability
• Without prior knowledge of the target model structure, the transfer attack is prone to fail

- Shao R, Shi Z, and Yi J. On the adversarial robustness of vision transformers. arXiv preprint arXiv:2103.15670, 2021.
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𝑆𝑆𝑒𝑒𝑛𝑛𝑠𝑠: quantify the noise sensitivity of models between regions of an image. 
Smaller 𝑆𝑆𝑒𝑒𝑛𝑛𝑠𝑠: more noise can be removed without affecting misclassification. 
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• Experimental results on ILSVRC-2012 , the overall high noise sensitivity of the ViT model 
results in a much larger initial adversarial noise required to achieve misclassification than 
CNN

• CNN

• ViT
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• Under decision-based attack, removing noise in regions with high 𝑆𝑆𝑒𝑒𝑛𝑛𝑠𝑠 is more likely to be 
the cause of decision attack compression failure

• Failures in noise compression are more likely to be caused by highly sensitive regions of 
the image.
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ViT 和 CNN的对抗鲁棒性对比

• CNNs: most regions are not sensitive and easy to compress
• ViTs: sensitivity of different regions varies greatly, therefore very difficult to compress the noise on 

the entire image as a whole.
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Patch-wise Adversarial Removal
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Patch-wise Adversarial Removal

• Noise sensitivity mask 𝑀𝑀𝑆𝑆: whether the noise is misclassified after removing the noise
• Noise magnitude mask 𝑀𝑀𝑁𝑁: records the noise amplitudes of different patches
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• Calculate the value of eliminating noise for a single patch
• Select the patch with low noise sensitivity and large noise magnitude
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• Query success: update the current adversarial example
• Query fail: update the noise sensitivity mask
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• Firstly eliminate noise in non-sensitive areas, and gradually optimizing sensitive areas
• Can be combined with other decision-based attack methods as an efficient noise 

initialization means
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Experiments

pResults on ILSVRC-2012

PAR: smaller noise magnitude than most decision-based attacks without using all the queries



pResults on ImageNet-21k

More significant performance improvement combined with the existing decision-based attacks
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pResults on Tiny-Imagenet

Effective when the target model is CNN
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Ablation study different initial and final patch sizes

Query time and noise compression efficiency for decision-based attacks
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Results on targeted attack

PAR compress noise under various patch size combinations
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Average noise magnitude decreases with the number of queries
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