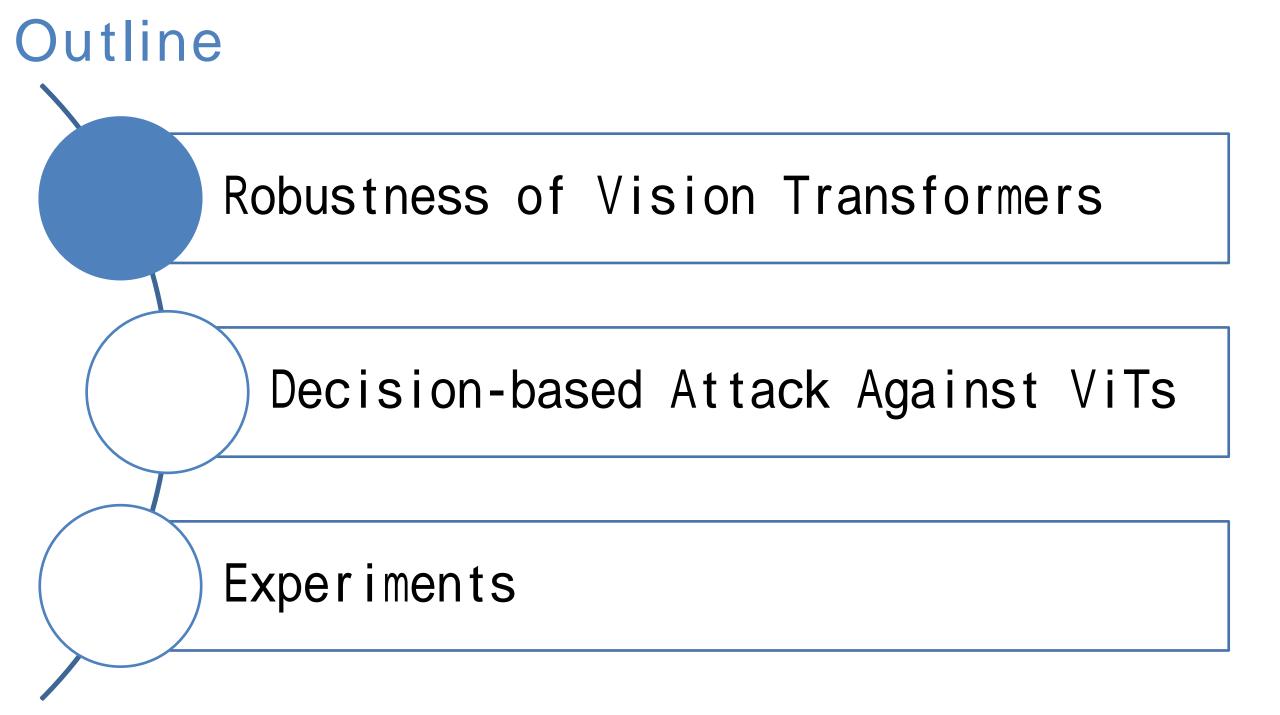
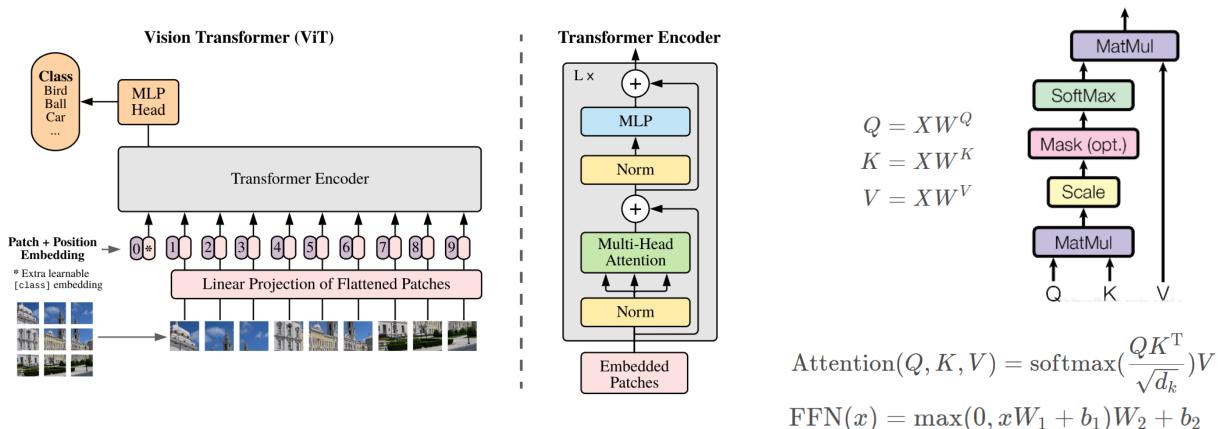
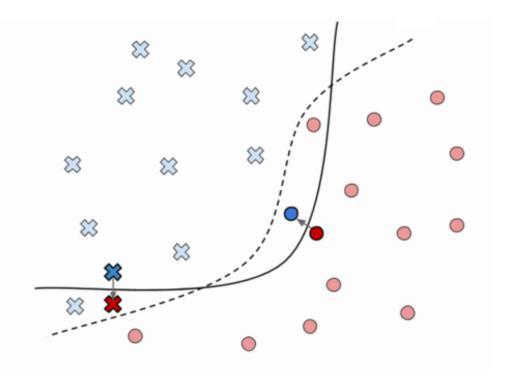
Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal


Yucheng Shi¹ Yahong Han¹ Yu-an Tan² Xiaohui Kuang³

¹College of Intelligence and Computing, and Tianjin Key Lab of Machine Learning, Tianjin University ²School of Cyberspace Science and Technology, Beijing Institute of Technology ³National Key Laboratory of Science and Technology on Information System Security


Code: https://github.com/shiyuchengTJU/PAR

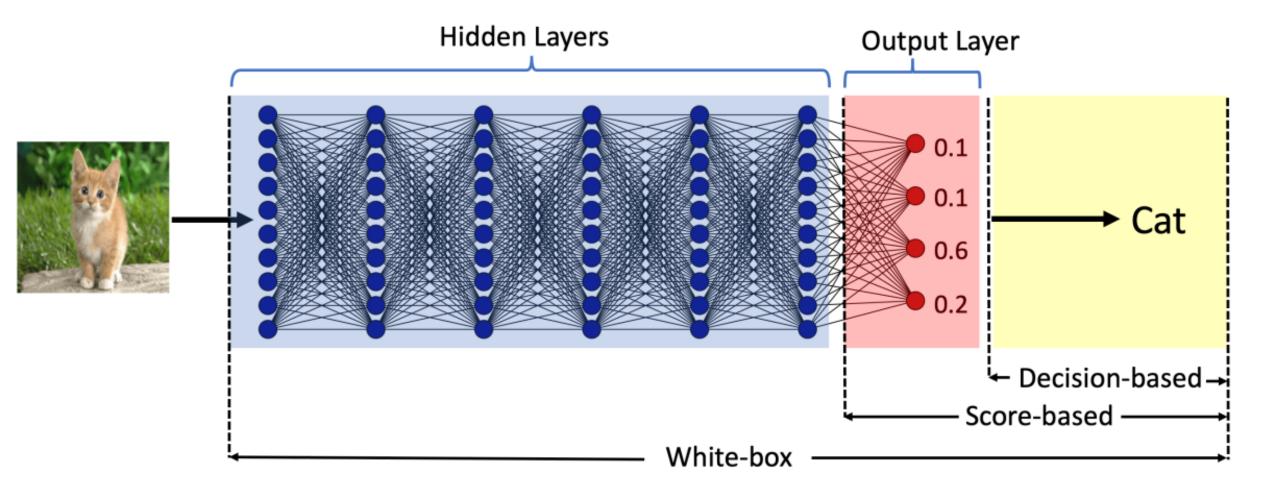
pVision Transformers

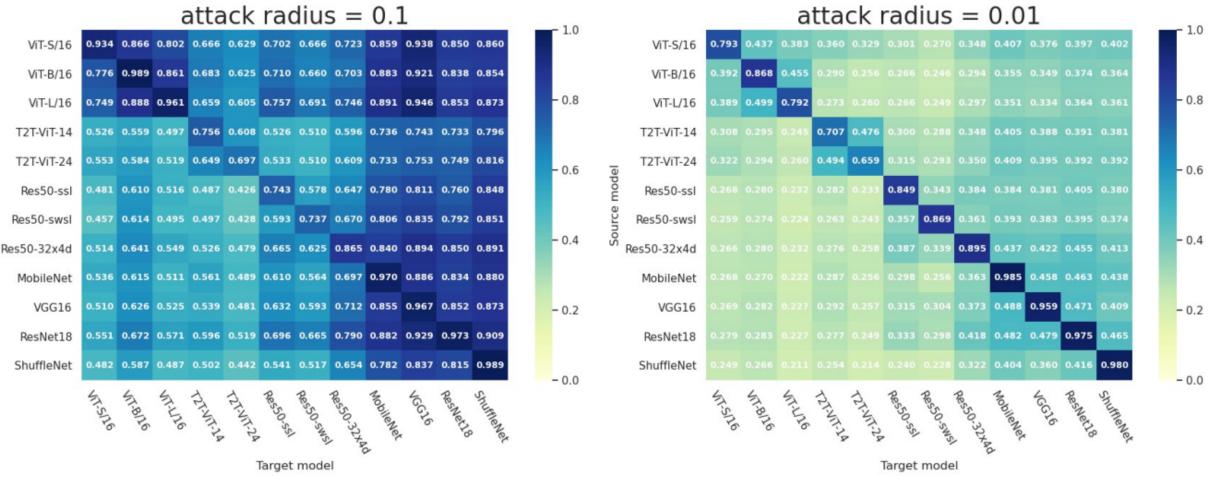

MatMul

V

Scale

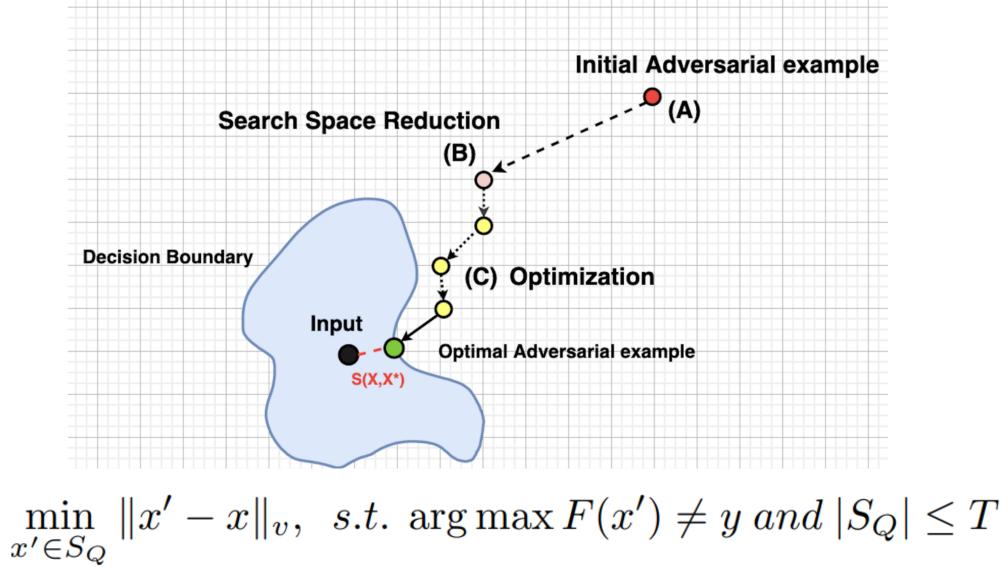
- Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In ICLR, 2020.


pAdversarial Example


Find x' s.t. $f_1(x)^1 f_1(x')$ $\mathsf{D}(x,x') < \boldsymbol{e}$ $f_2(x) = f_2(x')$

Training points for class 1
Model decision boundary
Training points for class 1
Training points for class 2
Test point for class 1
Test point for class 1
Adversarial example for class 1
Adversarial example for class 1

pBlack-box Attacks


Source model

- Structural differences between ViT and CNN models lead to poor cross structure transferability
- Without prior knowledge of the target model structure, the transfer attack is prone to fail

⁻ Shao R, Shi Z, and Yi J. On the adversarial robustness of vision transformers. arXiv preprint arXiv:2103.15670, 2021.

pDecision-based adversarial attack

Definition 1. Let x' be an adversarial example of ViT model F on the original image x, i.e., $F(x') \neq F(x)$, and z be the current adversarial noise z = x' - x. Let \tilde{z} be a new adversarial noise compressed from z in a rectangle patch with width of w, height of h, top left corner of sr, sc:

$$\tilde{z}(sr, sc, h, w, \kappa)_{r,c} = \begin{cases} z_{r,c} \cdot \kappa, & \text{if } sr \leq r < sr + h \text{ and } sc \leq c < sc + w, \\ z_{r,c}, & \text{else,} \end{cases}$$

where r and c refer to the row and column index of one pixel in noise z, respectively. $\kappa \in [0, 1]$ denotes the noise compression ratio. Define the noise sensitivity of a rectangle patch as the minimum noise compression ratio κ_{min} when F misclassifies $x + \tilde{z}$:

$$Sens(F, x, x', sr, sc, h, w) = \kappa_{min}, \quad s.t. \quad F(x + \tilde{z}(sr, sc, h, w, \kappa_{min})) \neq F(x)$$
$$and \forall \kappa' < \kappa_{min}, \quad F(x + \tilde{z}(sr, sc, h, w, \kappa')) = F(x).$$

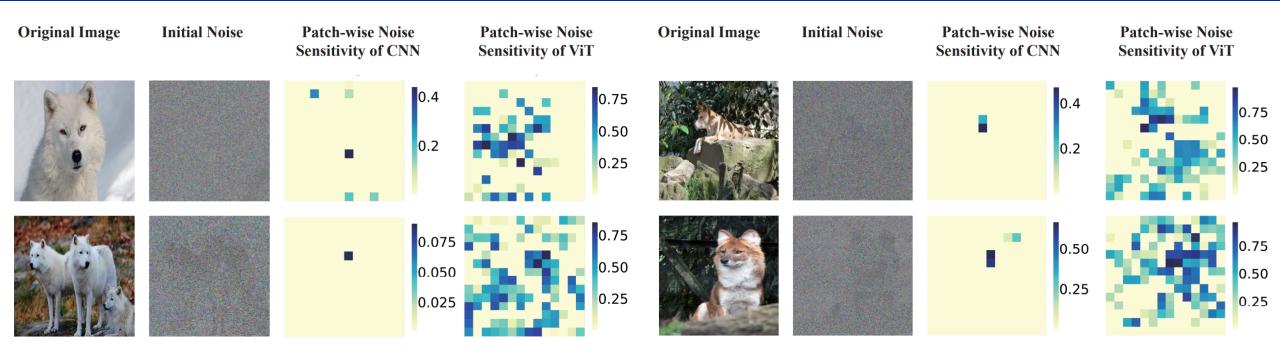
Sens: quantify the noise sensitivity of models between regions of an image. *Smaller Sens:* more noise can be removed without affecting misclassification.

• CNN

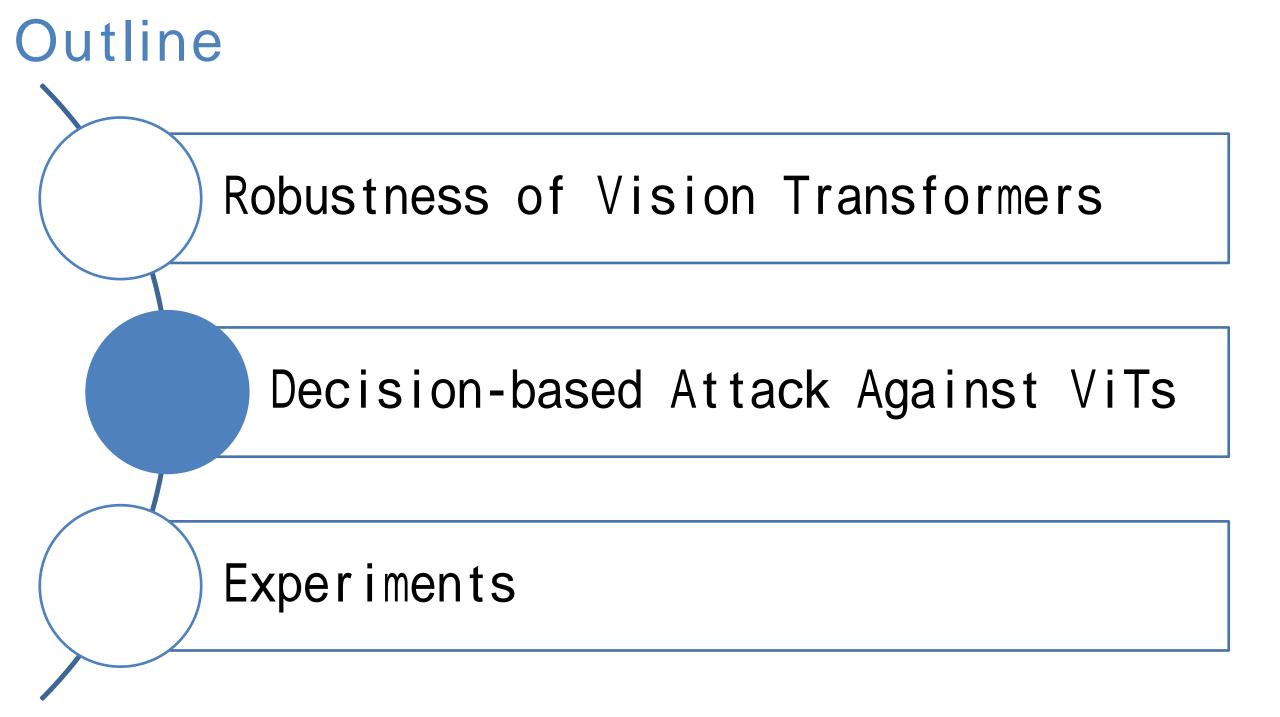
Target	res-101		dense		vgg-19		senet	
Methods	Mid	Avg	Mid	<u> </u>	Mid	Avg	Mid	Avg
Initial	58.60	54.71	54.38	52.77	34.80	34.67	49.52	53.96

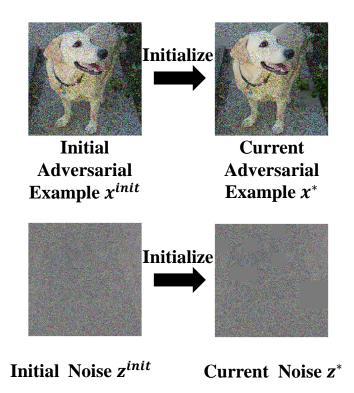
• ViT

Target	ti_116			r_ti_16		vit_s32		vit_b16		
Methods	Mid	Avg	Mi	d A	vg	Mid	Avg	Mid	Avg	
Initial	122.666	121.66	9 49.1	42 47	.79 7	79.332	74.452	104.872	95.84	7
Target	vit_l	b32	r50_	_132	ti	_s16	r2	6_s32	vit_	_s16
Methods	Mid	Avg	Mid	Avg	Mid	Avg	gMid	Avg	Mid	Avg
Initial	97.8	89.433	70.962	79.394	41.60	7 42.92	21 94.72	2 88.49	96.25	92.94

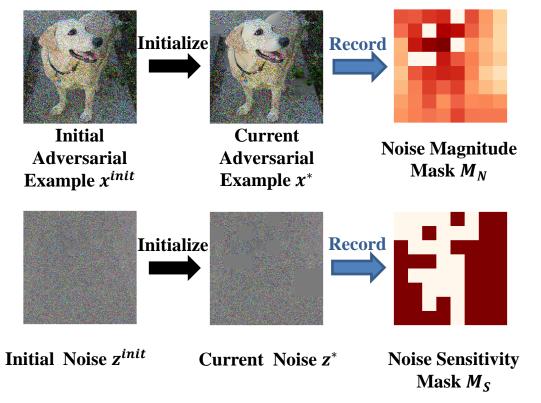

• Experimental results on ILSVRC-2012, the overall high noise sensitivity of the ViT model results in a much larger initial adversarial noise required to achieve misclassification than CNN

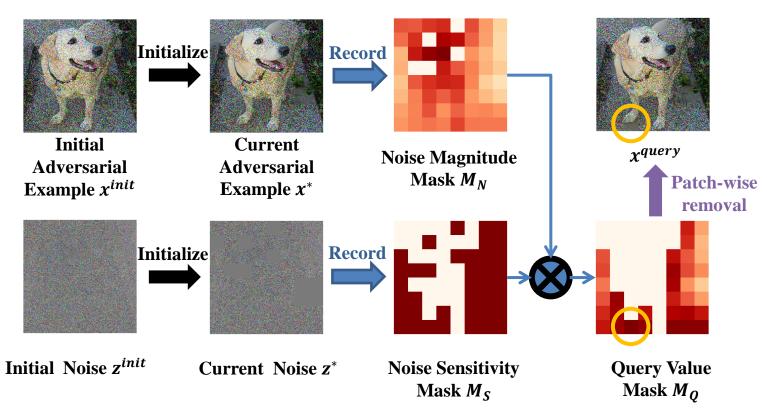
Proposition 1. Assume x' is an initial adversarial example generated by Boundary Attack against ViT F starting from original image x, $F(x) \neq F(x')$. For any $0 < r_1, r_2, h \leq Height, 0 < c_1, c_2, w \leq Width$, if $Sens(F, x, x', r_1, c_1, h, w) < Sens(F, x, x', r_2, c_2, h, w)$, and the new noise added by one step by Boundary Attack is z', then $P(F(x' + z'_1) \neq F(x)|F(x' + z') = F(x)) < P(F(x' + z'_2) \neq F(x)|F(x' + z') = F(x))$, where for $\iota = 1, 2$


$$z'_{\iota,r,c} = \begin{cases} 0, & if \quad r_{\iota} \leq r < r_{\iota} + h \quad and \quad c_{\iota} \leq c < c_{\iota} + w, \\ z'_{r,c}, & else, \end{cases}$$

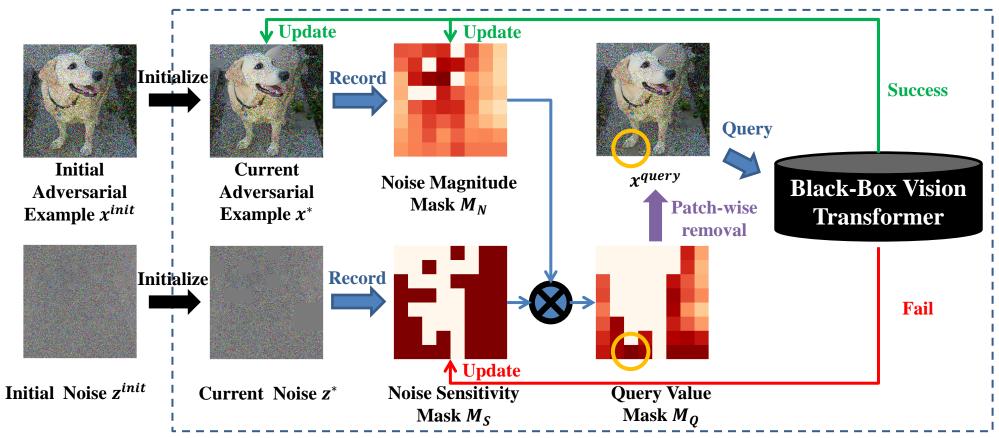

- Under decision-based attack, removing noise in regions with high *Sens* is more likely to be the cause of decision attack compression failure
- Failures in noise compression are more likely to be caused by highly sensitive regions of the image.

ViT和 CNN的对抗鲁棒性对比

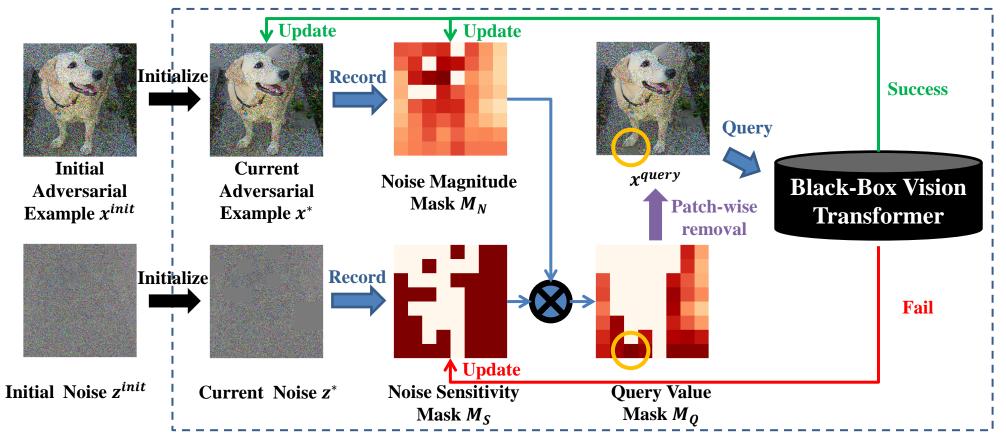

- CNNs: most regions are not sensitive and easy to compress
- ViTs: sensitivity of different regions varies greatly, therefore very difficult to compress the noise on the entire image as a whole.


• Adversarial noise initialization

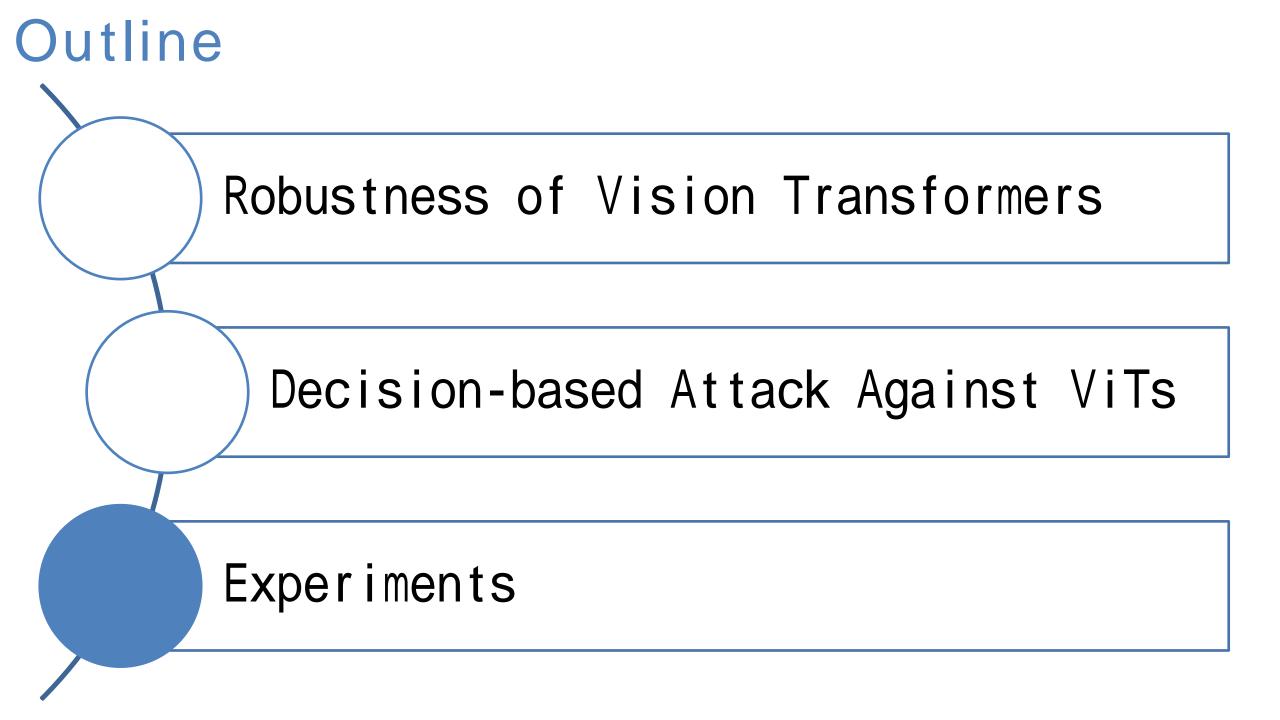
$$x^{init} = Clip_{x,\tau}\{x + \xi^{Gau}\}, \quad \xi^{Gau} \sim \mathcal{N}(0, var^2 I)$$


- Noise sensitivity mask M_S : whether the noise is misclassified after removing the noise
- Noise magnitude mask M_N : records the noise amplitudes of different patches

$$M_N(row, col) = \sqrt{\sum_{i=row*PS_0+1}^{(row+1)*PS_0} \sum_{j=col*PS_0+1}^{(row+1)*PS_0} (x_{i,j}^{init} - x_{i,j})^2} \qquad M_S = J_{row,col}$$


- Calculate the value of eliminating noise for a single patch
- Select the patch with low noise sensitivity and large noise magnitude

$$M_Q = M_N \odot M_S$$
 $row^*, col^* \leftarrow argmax(M_Q)$
 $z^{query} \leftarrow x^* - x$



- Query success: update the current adversarial example
- Query fail: update the noise sensitivity mask

$$z_{row^**PS+1:(row^*+1)*PS,col^**PS+1:(col^*+1)*PS}^{query} \leftarrow 0$$

- Firstly eliminate noise in non-sensitive areas, and gradually optimizing sensitive areas
- Can be combined with other decision-based attack methods as an **efficient noise initialization means**

PResults on ILSVRC-2012

Target	ti_116		r_ti	_16	vit_	_s32	vit_l	516
Methods	Mid	Avg	Mid	Avg	Mid	Avg	Mid	Avg
Initial	122.666	121.669	49.142	47.79	79.332	74.452	104.872	95.847
PAR	25.372	58.037	5.353	6.5	11.82	16.149	17.518	32.103
HSJA	79.806	91.875	28.195	30.339	57.971	51.718	76.448	73.613
PAR+HSJA	24.363	56.813	5.194	6.316	11.451	15.842	15.599	31.158
BBA	26.871	58.071	4.767	7.091	8.887	12.957	16.682	30.617
PAR+BBA	19.215	53.288	2.932	4.465	5.309	11.292	11.737	26.72
Evo	35.033	65.997	7.042	10.81	11.805	17.721	28.219	40.623
PAR+Evo	20.887	55.168	4.201	5.578	9.166	13.339	13.358	28.76
Boundary	39.43	66.223	9.116	12.512	18.191	20.409	26.333	38.064
PAR+Boundary	21.075	55.263	4.62	5.971	10.452	14.368	13.842	29.304
SurFree	30.971	61.017	5.69	9.325	11.024	15.758	17.341	33.533
PAR+SurFree	18.868	53.815	3.899	5.229	8.454	12.885	12.18	27.57
CAB	57.069	77.707	4.071	10.841	13.122	22.509	26.268	48.165
PAR+CAB	15.209	52.193	2.627	4.419	5.156	10.598	8.171	25.306
Sign-OPT	34.884	38.06	114.027	113.639	40.168	41.231	71.778	65.801
PAR+Sign-OPT	5.264	6.793	23.801	53.313	5.18	6.135	10.696	15.447

PAR: smaller noise magnitude than most decision-based attacks without using all the queries

Sign-OPT

PAR+Sign-OPT

30.581

4.525

36.062

8.067

ti_116 r26_s32 vit_s16 Target ti s16 median average median Methods median median median average average average 21.376 23.591 8.075 Initial 41.161 43.24 26.847 40.52 45.828 43.866 2.771 4.326 5.016 1.554 PAR 5.706 9.189 3.992 7.516 10.18 14.434 **HSJA** 8.06 16.369 25.535 20.356 25.011 13.444 25.268 4.367 PAR+HSJA 4.752 7.781 2.388 3.719 3.644 6.688 4.517 9.093 1.522 9.069 1.643 3.125 3.692 6.422 5.423 10.875 1.263 BBA 5.849 3.899 PAR+BBA 6.953 0.982 2.21 2.098 4.547 3.456 7.816 0.921 6.253 7.847 Evo 8.195 12.047 4.133 5.223 9.82 15.358 3.093 PAR+Evo 4.091 7.122 2.055 3.284 2.427 5.236 4.041 8.576 1.487 Boundary 11.25 14.102 4.8 6.068 7.963 11.533 8.047 13.583 2.442 PAR+Boundary 4.762 2.145 3.34 3.535 8.795 1.296 8.073 5.888 4.604 SurFree 6.331 10.485 1.505 3.486 7.849 5.979 11.001 0.949 3.048 PAR+SurFree 4.078 6.989 1.224 2.589 2.183 4.603 4.015 7.959 1.008 4.214 12.058 CAB <u>8.034</u> <u>1.966</u> <u>3.9</u>7<u>8</u> <u>2.364</u> <u>10.554</u> <u>3.646</u> 1.121 1.963 1.012 PAR+CAB 4.879 1.824 1.244 1.752 6.145

19.56

2.602

r_ti_16

average

14.297

2.592

8.373

2.51

2.315

1.759

3.924

2.223

3.876

2.307

2.25

1.912

2<u>.084</u>

1.423

12.083

2.548

0.694

6.392

1.353

38.496

9.387

Results on ImageNet-21k

More significant performance improvement combined with the existing decision-based attacks

29.566

3.578

22.152

3.73

3.484

38.994

6.679

20.952

4.91

PResults on Tiny-Imagenet

Target	res	-18	inc	-v3	inc-res		nas	snet
Methods	median	average	median	average	median	average	median	average
Initial	2.542	5.024	8.238	8.402	10.255	9.933	8.853	8.428
PAR	0.45	1.104	1.457	1.961	1.805	2.279	1.723	2.022
HSJA	0.959	2.762	3.479	4.576	5.053	5.603	4.226	5.237
PAR+HSJA	0.396	1.067	1.392	1.899	1.793	2.236	1.668	1.992
BBA	0.23	0.787	1.091	1.669	1.565	2.041	1.361	1.815
PAR+BBA	0.142	0.605	0.723	1.25	1.126	1.59	0.948	1.463
Evo	0.522	1.518	2.043	2.971	2.892	3.516	2.411	3.448
PAR+Evo	0.294	0.882	1.183	1.701	1.662	2.01	1.532	1.835
Boundary	0.577	1.194	1.552	2.091	2.38	2.807	1.967	2.388
PAR+Boundary	0.296	0.813	1.034	1.457	1.478	1.852	1.425	1.773
SurFree	0.143	0.653	0.627	1.233	1.126	1.772	0.963	1.639
PAR+SurFree	<u>0.14</u>	0.599	0.629	<u>1.171</u>	<u>1.087</u>	<u>1.479</u>	0.952	1.453
CAB	0.397	0.977	1.103	1.819	1.372	2.245	1.23	2.301
PAR+CAB	0.248	0.728	0.803	1.326	1.11	1.604	0.968	1.474
Sign-OPT	2.134	4.293	6.669	7.268	7.037	8.274	7.332	7.394
PAR+Sign-OPT	0.433	0.957	1.426	1.926	1.712	2.012	1.573	2.008

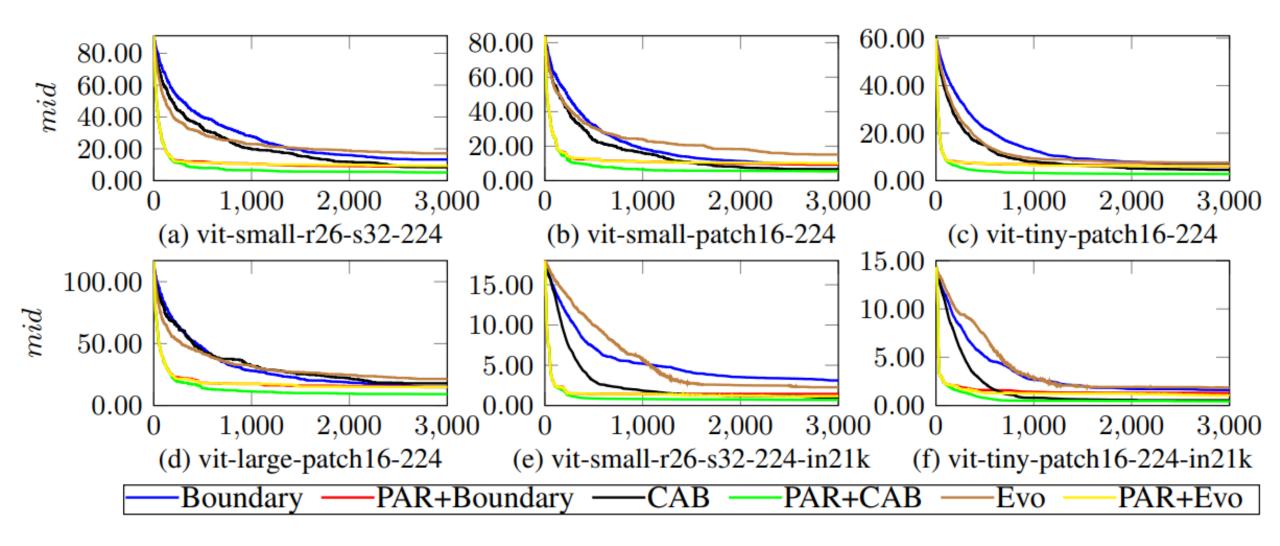
Effective when the target model is CNN

Experiments

	Initial Patch Size	112	112	112	112	56	56	56	28	28	14
	Minimum Patch Size	7	14	28	56	7	14	28	7	14	7
	Mid Noise	4.31	5.07	5.55	6.21	4.34	4.88	5.54	4.60	5.09	4.79
vgg-19	Avg Noise	5.83	7.11	8.17	8.84	5.92	7.20	8.33	6.11	7.43	6.47
	Avg Query Number	195.69	97.30	44.54	16.80	202.98	100.88	45.79	238.24	130.58	415.06
	Mid Noise	8.76	9.32	9.54	10.35	8.62	9.17	9.67	9.01	9.88	9.17
vit s16	Avg Noise	17.24	19.08	19.96	20.52	17.08	18.84	19.69	17.43	19.16	17.90
	Avg Query Number	249.34	122.81	49.53	17.04	247.01	120.93	49.90	289.67	153.07	448.60

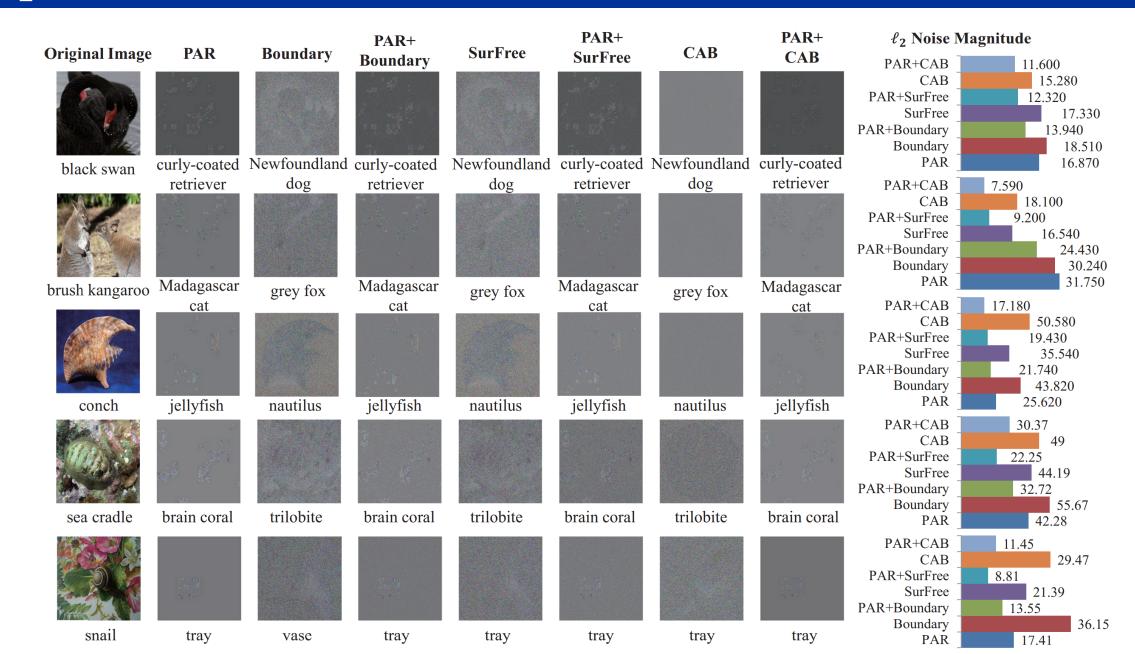
Ablation study different initial and final patch sizes

Methods	Time Cost (s)	Used step	Time Per Query (s)	Noise Compression Per Query
PAR	2.22	60	0.037	0.673
Evo	28.28	950	0.030	0.035
PAR+Evo	27.22	950	0.029	0.045
Boundary	31.37	950	0.033	0.040
PAR+Boundary	34.72	950	0.037	0.044
CAB	36.09	950	0.038	0.044
PAR+CAB	70.15	950	0.074	0.047


Query time and noise compression efficiency for decision-based attacks

	Initial	PAR	HSJA	BBA	Evo	Boundary	SurFree
Mid	152.296	39.821	92.183	67.728	69.397	52.584	57.808
Avg	154.797	40.792	93.767	70.01	69.039	51.272	55.378

Results on targeted attack


	Initial Patch Size	112	56	28	14	7
	Minimum Patch Size	1	1	1	1	1
	Mid Noise	4.73	4.95	5.20	5.98	13.05
vgg-19	Avg Noise	6.32	6.31	6.55	7.05	11.31
188 17	Avg Query Number	810.22	811.86	835.30	882.28	945.43
	Mid Noise	8.89	8.97	9.38	11.88	24.93
vit_s16	Avg Noise	17.68	17.53	17.49	18.90	26.84
	Avg Query Number	825.60	831.32	855.66	909.22	969.57

PAR compress noise under various patch size combinations

Average noise magnitude decreases with the number of queries

Experiments

