Byzantine-tolerant federated Gaussian process regression for streaming data

Xu Zhang, Zhenyuan Yuan, Minghui Zhu

School of Electrical Engineering and Computer Science Pennsylvania State University

November 28, 2022

2022 Conference on Neural Information Processing Systems New Orleans, LA

æ

Problem formulation

Network model:

- Cloud can communicate with agents
- Agents cannot communicate with each other
- Byzantine agents send arbitrary model parameters to the cloud **Observation model:**

イロト イヨト イヨト イヨト

$$y^{[i]}(t) = \eta(\boldsymbol{z}^{[i]}(t)) + e^{[i]}(t)$$

• Training data $(\boldsymbol{z}^{[i]}(t), y^{[i]}(t))$ arrive sequentially

Objective: Design a Byzantine-tolerant algorithm which

- Correctly learns the function η
- Does not require to share local streaming data $(\boldsymbol{z}^{[i]}(t), \boldsymbol{y}^{[i]}(t))$

Byzantine-tolerant federated GPR

Contribution

Design a Byzantine-tolerant federated Gaussian process regression (GPR) algorithm which

- Can guarantee the correct predictions and tolerate less than one quarter Byzantine agents
- Can deal with streaming data and perform on-line learning

Agent-based local GPR

イロト イヨト イヨト イヨト

Cloud-based aggregated GPR

• Byzantine-tolerant product of experts (PoE):

$$\hat{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}(t)} = \frac{\hat{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}(t)}^{2}}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}^{i} \check{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}^{\prime-2},$$
$$\hat{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}(t)}^{2} = \frac{|\mathcal{I}(t)|}{\sum_{i \in \mathcal{I}(t)} \check{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}^{\prime-2}}.$$

(Xu Zhang (Penn State))

Byzantine-tolerant federated GPR

Agent-based fused GPR

• Output:
$$\tilde{\mu}_{\boldsymbol{z}_*|\mathcal{D}(t)}^{[i]}, \, (\tilde{\sigma}_{\boldsymbol{z}_*|\mathcal{D}(t)}^{[i]})^2$$

イロト イヨト イヨト イヨト

Robustness of cloud-based aggregated GPR

Assumption

Less than one quarter of the agents are Byzantine.

Dispersion: $d^{[i]}(t) \triangleq \sup_{\boldsymbol{z} \in \boldsymbol{\mathcal{Z}}} D(\boldsymbol{z}, \boldsymbol{\mathcal{Z}}^{[i]}(t))$

Theorem (Cloud-based aggregated GPR: Mean)

For any $\mathbf{z}_* \in \mathbf{Z}$ and $0 < \delta < 1$, with probability at least $1 - \delta$, it holds that $\left|\hat{\mu}_{\mathbf{z}_*|\mathcal{D}(t)} - \eta(\mathbf{z}_*)\right| \leq (1 - \frac{\kappa(d^{\max}(t))}{\sigma_f^2 + (\sigma_e^{\max})^2}) \|\eta\|_{\infty} + \frac{\sigma_f^2 \ell_\eta d^{\max}(t)}{\sigma_f^2 + (\sigma_e^{\min})^2} + \sqrt{2\sigma^2(\ln 2 - \ln \delta)} + \Delta(d^{\max}(t)) \text{ where}$ $\Delta(s) \triangleq \frac{2\alpha(\sqrt{2\sigma^2(\ln(2n) - \ln \delta)} + \frac{\sigma_f^2 \|\eta\|_{\infty}}{\sigma_f^2 + (\sigma_e^{\min})^2})}{1 - 4\beta} \frac{\sigma_f^4 + \sigma_f^2(\sigma_e^{\max})^2 - \kappa(s)^2}{\sigma_f^2(\sigma_e^{\min})^2}.$

Theorem (Cloud-based aggregated GPR: Variance)

For any
$$\boldsymbol{z}_* \in \boldsymbol{\mathcal{Z}}$$
, it holds that $\frac{\sigma_f^2(\sigma_e^{\min})^2}{\sigma_f^2 + (\sigma_e^{\max})^2} \leq \hat{\sigma}_{\boldsymbol{z}_*|\mathcal{D}(t)}^2 \leq \sigma_f^2 - \frac{\kappa (d^{\max}(t))^2}{\sigma_f^2 + (\sigma_e^{\max})^2}.$

(Xu Zhang (Penn State))

ヘロト ヘヨト ヘヨト ヘヨト

Experiments (Synthetic dataset)

Experiment 1: Prediction performance in terms of consistency and different $\alpha,\,\beta$

(a) Consistency evaluation

(b) Prediction performance on different β

Experiment 2: Prediction performance on different functions

Algorithm	AfPoE	BtPoE	AedPoE
MSE (×10 ⁻³)	0.0049 ± 0.007	0.0236 ± 0.172	26.5339 ± 0.019

(Xu Zhang (Penn State))

8/10

Experiments (Real-world datasets)

Experiment 3: Performance on different attack magnitudes

(c) Attack-free standard PoE

(d) Byzantine-tolerant PoE

(e) Attacked standard PoE

Kin40k Kin40k 10 10^{-0.2|} ŧ USW 10 à Ť USW 10^{-0.4} 10 10^{-0.6} 10 -50 50 -100 100 -10 10 -50 50 -100 100 -10 Attack magnitude Attack magnitude (g) Byzantine-tolerant PoE Attacked standard PoE (h)

(Xu Zhang (Penn State))

Byzantine-tolerant federated GPR

9/10

₫

Conclusion

- Design a Byzantine-tolerant federated GPR algorithm
- Derive the upper bounds on the prediction errors and the lower and upper bounds of the predictive variances
- Demonstrate the robustness of Byzantine-tolerant GPR algorithm through experiments

Thank you

