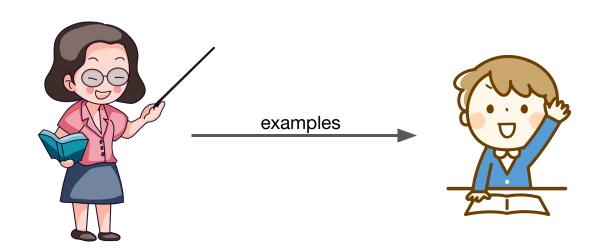
On Batch Teaching with Sample Complexity Bounded by VCD

Farnam Mansouri, Hans U. Simon, Adish Singla, Sandra Zilles

Thirty-sixth Conference on Neural Information Processing Systems, 2022

Motivation

Q: Teaching Complexity < VC-Dimension



GM-Collusion-freeness

GM-Collusion-free:

(informally) Adding more consistent examples shouldn't change learner's hypothesis [Goldman, Mathias 1996]

Smallest: NCTD [Kirkpatrick et al. 2019] < VC-Dimension (open question)

Beyond GM-Collusion-freeness
 What about the importance of examples?

Importance: example [Zilles, Lange, Holte, Zinkevich 2011]

concept in C_3^{pair}	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}
C_1	0	0	0	0	0	0	0	0	0	0	0
C_2	1	0	0	0	0	0	0	0	0	0	0
C_3	0	0	0	0	0	0	0	0	0	0	1
C_4	0	1	0	0	0	0	0	0	0	0	1
C_5	0	0	0	0	0	0	0	0	0	1	0
C_6	0	0	1	0	0	0	0	0	0	1	0
C_7	0	0	0	0	0	0	0	0	0	1	1
C_8	0	0	0	1	0	0	0	0	0	1	1
C_9	0	0	0	0	0	0	0	0	1	0	0
C_{10}	0	0	0	0	1	0	0	0	1	0	0
C_{11}	0	0	0	0	0	0	0	0	1	0	1
C_{12}	0	0	0	0	0	1	0	0	1	0	1
C_{13}	0	0	0	0	0	0	0	0	1	1	0
C_{14}	0	0	0	0	0	0	1	0	1	1	0
C_{15}	0	0	0	0	0	0	0	0	1	1	1
C_{16}	0	0	0	0	0	0	0	1	1	1	1

Table 1

Desirable Properties of Teaching Models

- 1. Class monotonicity
- 2. Domain monotonicity
- 3. Antichain property

Subset Teaching Dimension [Zilles, Lange, Holte, Zinkevich 2011]

STD Definition (informal): Define $STS^0(C, C) := \{\{(x, C(x)) \mid x \in X\}\}$. Iteratively define a collection $STS^{k+1}(C, C)$ of *subset teaching sets* as the collection that contains all smallest-size sets S that satisfy the following:

- 1. $S \subseteq S'$ for some $S' \in STS^k(C, \mathcal{C})$;
- 2. $S \not\subseteq S'$ for all $S' \in STS^k(C', C)$ where $C' \in C$, $C' \neq C$.

The Subset Teaching Dimension $STD(\mathcal{C})$, is defined as $STD(\mathcal{C}) := \max_{\mathcal{C}} \min_{S \in STS^{\infty}} |S|$.

Class Monotonicity	Domain Monotonicity	Anti Chain Property	≦ VCD	≦ RTD
no	no	yes	no	no

Table 2: STD properties

A Variant of Subset Teaching Dimension

Definition of STD_{min} (informal): A sequence $\mathcal{T} = (T_k)_{k \in \mathbb{N}}$ of teachers for \mathcal{C} is called a subset teaching sequence for \mathcal{C} if, for all $C \in \mathcal{C}$ and all $k \in \mathbb{N}$:

$$T_0(C) = \{(x, C(x)) \mid x \in X\},$$

$$T_{k+1}(C) \subseteq T_k(C),$$

$$T_{k+1}(C) \not\subseteq T_k(C') \text{ for all } C' \in \mathcal{C}, C' \neq C.$$

Define $STD_{\min}(C) = \min_{T^{\infty}} \max_{C} |T^{\infty}(C)|$.

Class Monotonicity	Domain Monotonicity	Anti Chain Property	≦ VCD	≦ RTD	
yes	yes	yes	yes	yes	

Table 3: STD_{min} properties