WeightedSHAP: analyzing and improving Shapley based feature attributions

Yongchan Kwon and James Zou

Feature attribution problem

→ **Goal**: quantify the **impact of each feature** for a particular model prediction

Marginal contributions and SHAP

$$\Delta_j(x_i) := \text{Average of} \qquad \underbrace{(f(S \cup \{x_i\}) - f(S))}_{\text{difference in model predictions}}$$
Considers every possible subset with $|S| = j$
SHAP $= \frac{1}{d} \sum_{j=1}^d \Delta_j(x_i)$
Question:
is simple mean optimal?

is **simple mean** optimal?

SHAP is suboptimal

On non-negligible areas, SHAP fails to find more influential features.

Why? Different marginal contributions have different signals and noises.

Marginal contributions with the largest coalition size is the **most effective to** capture signals, but having largest estimation errors.

Proposed idea: WeightedSHAP

 \rightarrow Find the **optimal weight** that optimizes some predefined utility function:

$$\max_{\boldsymbol{w}} \operatorname{Criteria} \left(\sum_{j=1}^{d} \boldsymbol{w}_{j} \Delta_{j}(x_{i}) \right)$$

WeightedSHAP gives larger weights on more important marginal contributions while reducing estimation errors.

Feature addition experiment

 \rightarrow WeightedSHAP **identifies influential features** and outperforms SOTA in recovery of the original model prediction.

Illustrative example: WeightedSHAP vs SHAP

Top 10% features selected by WeightedSHAP and SHAP. \rightarrow WeightedSHAP provides **more intuitive explanations.**

Thank you for listening!

Key contributions

- We analyze suboptimality of SHAP
- A generalized attribution method WeightedSHAP

Easy-to-start Jupyter notebooks are available!