Near-Optimal Sample Complexity Bounds for Constrained MDPs

Sharan Vaswani*, Lin F. Yang*, Csaba Szepesvari

https://arxiv.org/abs/2206.06270

Reinforcement Learning

Learn to interact with an unknown environment through trial and error

Value:
$$V_r^{\pi} := \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots]$$

Goal: Find a policy π to maximize the value (cumulative infinite-horizon discounted reward)

Constrained Reinforcement Learning

Maximize the reward value subject to a constraint

$$\max_{r} V_{r}^{\pi} \text{ s.t. } V_{c}^{\pi} \ge b$$

Example:

- *r* : task reward
- c : negative "energy used" (constraint reward)

Maximize task reward while keeping energy use below threshold.

Goal: Move to a series of goal positions

Button: Press a series of goal buttons

Safety Gym (OpenAI)

Push: Move a box to a series of goal position

(Malik et al, 2020)

(Ma et al, 2021)

Constrained Markov Decision Processes

- •States: \mathcal{S} ; Actions: \mathscr{A}
- •Rewards: $r_{s,a} \in [0,1]$
- State transitions: P(s' | s, a)
- Constraint rewards: $c_{s,a} \in [0,1]$
- Constraint threshold: b
- -Initial state distribution: ρ
- •Discount factor: $\gamma \in (0,1)$
- Policy: $\pi: \mathcal{S} \to \mathcal{A}$

4

Constrained Markov Decision Processes $\max_{\pi} V_{r}^{\pi}(\rho) \text{ s.t. } V_{c}^{\pi}(\rho) \geq b$ Initial state distribution

Constrained Markov Decision Processes $\max_{\pi} V_{r}^{\pi}(\rho) \text{ s.t. } V_{c}^{\pi}(\rho) \geq b$ Initial state distribution

Optimal policy & value: π^* , $V_r^*(\rho)$ ϵ -optimal policy π : $V_r^{\pi}(\rho) \ge V_r^*(\rho) - \epsilon$

Compared to MDPs, Optimal policy might need to randomize Optimal policy changes with ρ

Constrained Markov Decision Processes $\max_{\pi} V_r^{\pi}(\rho) \text{ s.t. } V_c^{\pi}(\rho) \ge b$ Initial state distribution

Optimal policy & value: π^* , $V_r^*(\rho)$ ϵ -optimal policy π : $V_r^{\pi}(\rho) \ge V_r^{*}(\rho) - \epsilon$

Feasibility Assumption: $\zeta := \max V_c^{\pi}(\rho) - b > 0$ Slater constant

Compared to MDPs, Optimal policy might need to randomize Optimal policy changes with ρ

Sample complexity of planning

Generative model

The agent can obtain samples from $P(\cdot | s, a)$ for every (s, a) $r_{s,a}$, $c_{s,a}$ is known at all (s, a) pairs, but P is unknown

Sample complexity of planning

Generative model

The agent can obtain samples from $P(\cdot | s, a)$ for every (s, a) $r_{s,a}$, $c_{s,a}$ is known at all (s, a) pairs, but P is unknown

Q: How many samples are needed from the generative model to output policy $\hat{\pi}$ such that:

1. Relaxed Feasibility: $V_r^{\hat{\pi}}(\rho) \ge V_r^*(\rho) - \epsilon$ and $V_c^{\hat{\pi}}(\rho) \ge b - \epsilon$

2. Strict Feasibility: $V_r^{\hat{\pi}}(\rho) \ge V_r^*(\rho) - \epsilon$ and $V_c^{\hat{\pi}}(\rho) \ge b$

Sample complexity of planning - Existing Bounds

MDPs: Lower Bound: $\Omega(H^3SA \epsilon^{-2})$ [Azar et al' 2013] Upper Bound: $\tilde{O}(H^3SA \epsilon^{-2})$ [Sidford et al. 2018, Agarwal et al. 2020,Li et al. 2021]

Sample complexity of planning - Existing Bounds

MDPs: Lower Bound: $\Omega(H^3SA e^{-2})$ [Azar et al' 2013] Upper Bound: $\tilde{O}(H^3SA \epsilon^{-2})$ [Sidford et al. 2018, Agarwal et al. 2020, Li et al. 2021]

CMDPs:

Trivial Lower Bound: $\Omega(H^3SA e^{-2})$ (since MDPs are a special case of CMDPs)

Upper Bound:

- **1. Relaxed Feasibility:** $\tilde{O}(H^3S^2A e^{-2})$ [HasanzadeZonuzy et al 2021] $\tilde{O}(H^5SA e^{-2})$ [Ding et al 2021]

2. Strict Feasibility: $\tilde{O}(H^6SA \epsilon^{-2}\zeta^{-2})$ [Bai et al 2022]

Sample complexity of planning - Our results

1. Relaxed Feasibility

Upper Bound: Model-based algorithm that requires $\tilde{O}(H^3SA\epsilon^{-2})$ samples

Sample complexity of planning - Our results

1. Relaxed Feasibility

Upper Bound: Model-based algorithm that requires $\tilde{O}(H^3SA\epsilon^{-2})$ samples

2. Strict Feasibility

Lower Bound:

For any $\delta \in (0,1)$, $\epsilon \in [0,H]$, there exists a CMDP with Slater constant ζ such that any (ϵ, δ) -algorithm requires $\Omega(H^5SA \epsilon^{-2}\zeta^{-2})$ samples

Sample complexity of planning - Our results

1. Relaxed Feasibility

Upper Bound: Model-based algorithm that requires $\tilde{O}(H^3SA\epsilon^{-2})$ samples

2. Strict Feasibility

Lower Bound:

For any $\delta \in (0,1)$, $\epsilon \in [0,H]$, there exists a CMDP with Slater constant ζ such that any (ϵ, δ) -algorithm requires $\Omega(H^5SA \epsilon^{-2} \zeta^{-2})$ samples

Upper Bound: Model-based algorithm that requires $\tilde{O}(H^5SA\epsilon^{-2}\zeta^{-2})$ samples