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Introduction

() Federated Learning (FL) refers to the decentralized and privacy-preserving machine learning
framework.

O There is often distribution shift among the clients’ data.

L However, FL techniques often only focus on performance on the source domains/clients, not
how the model generalize to an unseen domain under some distribution shifts.

O For example, if K clinical institutions in the US and UK collaborate to train a model with their
decentralized data, the goal for the model is not only to perform well on their data distribution,
but also to generalize to unseen target data (e.g., from a different country).
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Introduction

O In this paper, we incorporate the Domain Generalization (DG) problem into the FL setting to
tackle this generalization issue.

O A common and successful method for DG is representation alignment. However, existing
works require sharing and comparing data among domains, which is not allowed in FL.

J We propose approaches for implicit alignment, that completely respect the the privacy aspect
of FL.

O In particular, we propose to learn a simple representation of the data, with a L2-norm
regularizer and a conditional mutual information regularizer.

J We also show that these regularizers help to implicitly aligns the representation.
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Problem Setting

[ Representation learning framework:
U Representation mapping: p(z|x)

U Classifier: p(y|z)
d Predictive distribution: Ep, ;1. [0 (¥[x)]

O Loss per datapoint (x,y): —log Ep, ;1) [D(¥]x)]

[ Local loss function of a client/domain i with data distribution p;(x, y)
Ep (e[~ 108 Ep 21 [ /1]

[ Global loss over all client:
1

1 clients z Ep,xy) | =108 Ep 21y [D 12)]]
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Approach

O The conventional loss function of FL (previous slide) only focus on performance on the source
clients i’s.

O To learn a generalizable representation, we propose to use common regularization techniques
to restrict the complexity of the representation, hoping that it would learn essential information
and ignore spurious correlation.

J We also show both theoretically and empirically that these regularizers leads to better
marginal and conditional representation alignment.
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Approach: L2-norm Regularizer

J We regularize the 12-norm of the representation:
L2R _ 2
67 = Epio [Ep<z|x> [||Z||2”

J Connection to marginal alignment of the representation (details in our paper).
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Approach: Conditional Mutual Information

(J We minimize a tractable upper bound of the conditional mutual information
Ii(x,z|y):

fl'CMI = [Epi(x,y) [KL lp(z]x) |T(Z|Y)]]

With r(z|y) being a learnable variational distribution.

J Connection to conditional alignment of the representation (details in our
paper).
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Results

Quantitative:

Table 2: PACS. Reported numbers are from 3 runs

PACS
Models Backbone A C P S Average

Centralized DGER [47] Resnet18 80.70 76.40 96.65 71.77 81.38

Methods DIRT-GAN [31] Resnetl8 82.56 76.37 95.65 79.89 83.62
FedAVG [28] Resnetl8  77.8+0.5 72.8+04 919+0.5 78.8+0.3 80.3
FedADG [45] Resnetl8  77.8+0.5 74.7£0.4 92.9+0.3 79.5+04 81.2
FL FedCMI (ours) Resnet18  80.8+0.4 73.7£0.2 92.840.5 79.5+0.2 81.7
Methods FedL2R (ours) Resnetl8 82.2+0.4 75.8+0.3 92.8404 81.6+0.1 83.1
FedSR (ours) Resnetl8  83.2+0.3 76.0+0.3 93.8+#0.5 81.9+0.2 83.7
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Results

Quantitative:

Table 3: OfficeHome. Reported numbers are from 3 runs

OfficeHome
Models Backbone A €& P R Average
Centralized Mixup [44] Resnet50 64.7 54.7 773 192 69.0
Methods CORAL [38] Resnet50 64.4 3983 76.7 TS 68.6

FedAVG [28] Resnet50 62.2+0.9 55.6£0.9 75.7+£0.2 78.2+0.2 67.9
FedADG [45] Resnet50 63.2+0.9 57.0+0.2 76.0£0.1 77.7+0.5 68.4

FL FedCMI (ours) Resnet50 61.8+0.5 55.5+0.9 76.3+x0.1 77.4+0.1 67.8
Methods FedL2R (ours) Resnet50 64.5+0.3 56.5£0.5 76.1£0.2 77.9+0.2 68.8
FedSR (ours) Resnet50 65.4+0.5 57.4+0.2 76.2+0.6 78.3+0.3 69.3
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Results

Quantitative:

Table 4: DomainNet. Reported numbers are from 3 runs

DomainNet
Models Backbone C I P Q R S AVG

Centralized | MLDG [21] Resnet50 59.5 19.8 48.3 130 59.5 504 41.8
Methods | CORAL [38] Resnet50  58.7 20.9 47.3 13.6 60.2 502 418

FedAVG [28] Resnet50 59.3+0.7 16.5+0.9 44.2+0.7 10.8+1.8 57.2+0.8 49.8+0.4 39.6
FedADG [45] Resnet50 60.9+0.6 17.2+0.2 44.3+0.2 12.4+0.2 57.6+0.9 50.3+0.8 40.4

FL FedCMI (ours) Resnet50 59.0+0.9 18.0+0.7 44.6+0.5 12.2+0.4 56.2+0.2 50.0+0.4 40.0
Methods | FedL2R (ours) Resnet50 60.2+0.6 18.1+0.4 44.9+0.6 11.0+0.9 57.8+0.4 51.5+0.7 40.6
FedSR (ours) Resnet50 61.0+£0.6 18.6+0.4 45.2+0.5 13.4+0.6 57.6+0.2 51.8+0.3 41.3
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Results

Qualitative: Our method leads to better alignment of the representation.
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Figure 1: Visualization using t-SNE of the representation space of our method FedSR and the
baselines FedAVG. For each method, the left subfigure corresponds to one source domain M5 and
the right one corresponds to the target domain M. Each color represents a digit class.




