## Constraining Gaussian Processes to Systems of Linear Ordinary Differential Equations

## Why should you care?

- Many things run on differential equations - Lotka-Volterra, fluid dynamics,
- For systems of linear homogenuous ordinary differential equations with constant coeficients
- Developed symbolic and algorithmic approach to constrain GPs to them
- Realizations of GPs strictly satisfy system of ODEs
- Approach also extracts parameters from system of ODEs automatically
- Learning parameters together with GPs
- We call them LODE-GPs


## Prerequisites \& assumptions

- Given a system of ODEs of the form

$$
\begin{equation*}
A \cdot \mathbf{f}(t)=0 \tag{1}
\end{equation*}
$$

- Operator matrix $A \in \mathbb{R}\left[\partial_{t}\right]^{m \times n}$
- Smooth functions $f_{i}(t) \in C^{\infty}(\mathbb{R}, \mathbb{R})$ of $\mathbf{f}(t)=\left(f_{1}(t) \ldots f_{n}(t)\right)^{T}$


## Theorem

For every system as in Equation 1 there exists a GP $g$, such that the set of realizations of $g$ is dense in the set of solutions.

How we did it

$$
\begin{aligned}
& U \cdot A \cdot V \cdot V^{-1} \cdot \mathbf{f}=0 \\
& \Leftrightarrow \quad D \cdot V^{-1} \cdot \mathbf{f}=0 \\
& \Leftrightarrow \quad D \cdot \mathbf{p}=0 \\
& \Leftrightarrow\left\{\begin{array}{c}
\underset{i=1}{\min (n, m)} \underset{i=1}{n} D_{i, i} \cdot \mathbf{p}_{i}=0
\end{array}\right. \\
& \left.{ }_{i=\min (n, m)+1}^{n} 0 \cdot \mathbf{p}_{i}=0\right\}
\end{aligned}
$$

- Decoupled latent vector $\mathbf{p}=V^{-1} \mathbf{f}$ of functions
- GP-prior for $h \sim \mathcal{G} \mathcal{P}(\mathbf{0}, k)$ for $\mathbf{p}$ via multi-output GP
- Pushforward of $h$ with $V$ yields a GP $g$ The pushforward can be formulated as

$$
g \sim V_{*} h=\mathcal{G} \mathcal{P}\left(\mathbf{0}, V \cdot k \cdot V^{\prime}\right)
$$

with $V^{\prime}=V^{T}$ applied on $t_{2}$.

- Zeroes of $D$ s diagonal entries are used to construct covariance function $k$ of $h$ (see table below)
$k\left(t_{1}, t_{2}\right)$

$$
\left(\partial_{t}-a\right)^{j}
$$

$\left(\Sigma_{i=0}^{j-1} t_{1}^{i} t_{2}^{i}\right) \cdot \exp \left(a \cdot\left(t_{1}+t_{2}\right)\right)$

$$
\left(\left(\partial_{t}-a-i b\right)\left(\partial_{t}-a+i b\right)\right)^{j}\left(\Sigma_{i=0}^{j-1} t_{1}^{i} t_{2}^{i}\right) \cdot \exp \left(a \cdot\left(t_{1}+t_{2}\right)\right) \cdot \cos \left(b \cdot\left(t_{1}-t_{2}\right)\right)
$$

0

The linearized bipendulum


- With acceleration $u(t)$ proportional to $x^{\prime \prime}(t)$ we have system of ODEs:

$$
\begin{aligned}
& f_{1}^{\prime \prime}(t)+g \cdot f_{1}(t)-u(t)=0 \\
& f_{2}^{\prime \prime}(t)+\frac{g}{2} \cdot f_{2}(t)-\frac{u(t)}{2}=0
\end{aligned}
$$

- Which translates to operator matrix $A$ :

$$
\underbrace{\left[\begin{array}{ccc}
\partial_{t}^{2}+g & 0 & -1 \\
0 & \partial_{t}^{2}+\frac{g}{2} & -\frac{1}{2}
\end{array}\right]}_{A} \cdot\left[\begin{array}{l}
f_{1}(t) \\
f_{2}(t) \\
u(t)
\end{array}\right]
$$

- For rope lengths $\ell_{1} \neq \ell_{2}$ the linearized Bipendulum (above) is controllable. For $\ell_{1}=1, \ell_{2}=2$ :

- From $D$ we construct prior cov. fkt. $k$ with diagonal entries $\left(0,0, k_{\mathrm{SE}}\right)$
- Where $k_{\text {SE }}=\exp \left(-\frac{1}{2}\left(t_{1}-t_{2}\right)^{2}\right)$
- The LODE-GP kernel is defined by

$f_{1}$



Acknowledgement
This research was supported by the research training group "Dataninij" "Trustworthy AI
for Seamless Problem Solving: Next Generation Intelligence Joins Robust Duta Gor Seamless Problem Solving: Next Generation Intelligence Joins
funded by the German federal state of North Rhine-Westphalial

## 

PU *ituman (z)
0 Mis.
NEURAL INFORMATION PROCESSING SYSTEMS jig:

