Machine Learning with Physics

Scaling Law, Optimization and Minimax Optimality

Yiping Lu

Institute for Computational and Mathematical Engineering School Of Engineering Stanford University

Joint work with Haoxuan Chen, Jianfeng Lu, Lexing Ying and Jose Blanchet.

Motivation 1

Yiping Lu

Statistical Numerical PDE

<u>Inverse Problem</u>: What we can measure is not what we want to know! How to do machine learning?

- Stock price \rightarrow drift
- Imaging: X-Ray, CT, Calderon problems
- Our work: "Inverse Game Theory": policy → utility (not included today)

How much data we need?

Satistical Limit. For a given PDE , how large the sample size are needed to reach a prescribed performance level?

Optimal Estimators. How complex the model are needed to reach the satistical limit?

Computational Power. How can we design an algorithm?

Satistical Limit. For a given PDE , how large the sample size are needed to reach a prescribed performance level?

Optimal Estimators. How complex the model are needed to reach the satistical limit?

Computational Power. How can we design an algorithm?

Satistical Limit. For a given PDE , how large the sample size are needed to reach a prescribed performance level?

Optimal Estimators. How complex the model are needed to reach the satistical limit?

Computational Power. How can we design an algorithm?

Statistical Limit. Gradient value have more information

Optimal Estimators. PINN and Modified DRM are optimal

Computational Power. Sobolev Loss Accelerates Training

Statistical Limit. Gradient value have more information

Optimal Estimators. PINN and Modified DRM are optimal

Computational Power. Sobolev Loss Accelerates Training

Statistical Limit. Gradient value have more information

Optimal Estimators. PINN and Modified DRM are optimal

Computational Power. Sobolev Loss Accelerates Training

Statistical Limit. Decided by hardest side (input/output)

Optimal Estimators. bias/variance contour

Computational Power. Multi-level Monte Carlo Algorithm

Statistical Limit. Decided by hardest side (input/output)

Optimal Estimators. bias/variance contour

Computational Power. Multi-level Monte Carlo Algorithm

Statistical Limit. Decided by hardest side (input/output)

Optimal Estimators. bias/variance contour

Computational Power. Multi-level Monte Carlo Algorithm

- Deep Ritz Method High dimensional problem,
 Smooth problem
- PINN Low dimensional problem, Non-smooth problem
- Operator Learning needs multi-scale ensemble to achieve the bias and variance pareto frontline.

Related Work

Bayesian Formulation

Convergence rates for penalised least squares estimators in PDE-constrained regression problems. SIAM UQ

- Sampling Algorithm
 - On polynomial-time computation of high-dimensional posterior measures by Langevin-type algorithms.
- Complicated Inverse Problem

Consistent inversion of noisy non-Abelian X-ray transforms. CPAM 2021.

ICM note

On some information-theoretic aspects of non-linear statistical inverse problems.

- 1. Problem Formulation
- 2. Lower Bound
- Upper Bound Empirical Risk Minimization Gradient Descent
- 4. Linear Opeartor Learning

Problem Formulation

Problem Formulation

What we observed:

- Random Samples in Domain: $\{x_i\}_{i=1}^n \sim \text{Unif}(\Omega)$
- RHS Function Values: $\{f_i = f(x_i) + \eta_i\}_{i=1}^n$

What we want:

An Esitmate of <u>u</u> in **Sobolev Norm**.

(1)

Lower Bound

General Lower Bound

- Solution $u \in \underline{H^{\alpha}}$
- Consider Convergence in <u>H^s</u>

Now:	
PINN:	H ² norm
DRM:	H ¹ norm

Upper Bound

Strong form (residual minimization) → Physics Informed Neural Network/DGM

$$\mathcal{L}(u) := \left| (-\Delta + V)u - f \right|_{L^2(\Omega)}^2$$

Variational form → Deep Ritz Methods

$$u^{*} = \arg\min_{u \in H^{1}(\Omega)} \mathcal{E}(u) := \frac{1}{2} \int_{\Omega} \|\nabla u\|^{2} + V\|u\|^{2} u(x) - \int_{\Omega} fu(x)$$

Strong form (residual minimization) → Physics Informed Neural Network/DGM

$$\mathcal{L}(u) := |(-\Delta + V)u - f|_{L^2(\Omega)}^2$$

Variational form → Deep Ritz Methods

$$u^{*} = \arg\min_{u \in H^{1}(\Omega)} \mathcal{E}(u) := \frac{1}{2} \int_{\Omega} \|\nabla u\|^{2} + V\|u\|^{2} u(x) - \int_{\Omega} fu(x)$$

Will different objective function gives different answers to **Statistical Effi**-**ciency**,**Optimization**?

Error Decomposition

bias+variance decomposition:

approximation +
$$\frac{\text{Complexity}}{\sqrt{n}}$$
 bound

But leads to sub-optimal results... [Shin et al 2020], [Lu et al 2021], [Duan et al

2021]

Motivating Example

Estimating the mean

Goal. Estimate $\theta = \mathbb{E}[X]$ via loss function $\frac{1}{2}(\theta - x)^2$

Empirical Solution of
$$\ell_2$$
 loss: $\theta_n = \frac{1}{n} \sum_{i=1}^n x_i$, using chernoff bound we know $\theta_n - \theta = \sqrt{\frac{\sigma^2 \log \frac{1}{\delta}}{n}}$ w.h.p.

The generalization gap $L(heta_n) - L(heta^*) = \| heta - heta^* \|^2$ w.h.p

$$L(\theta_n) - L(\theta^*) = (\theta_n - \theta^*)^2 \leq C \frac{\sigma^2 \log \frac{1}{\delta}}{n}$$

A $O(\frac{1}{n})$ fast rate bound.

Yiping Lu

Motivating Example

Estimating the mean

Goal. Estimate $\theta = \mathbb{E}[X]$ via loss function $\frac{1}{2}(\theta - x)^2$

Empirical Solution of
$$\ell_2$$
 loss: $\theta_n = \frac{1}{n} \sum_{i=1}^n x_i$, using chernoff bound we know $\theta_n - \theta = \sqrt{\frac{\sigma^2 \log \frac{1}{\delta}}{n}}$ w.h.p.

The generalization gap $L(\theta_n) - L(\theta^*) = \|\theta - \theta^*\|^2$ w.h.p

$$L(\theta_n) - L(\theta^*) = (\theta_n - \theta^*)^2 \leq C \frac{\sigma^2 \log \frac{1}{\delta}}{n}$$

A $O(\frac{1}{n})$ fast rate bound.

The variational form has some "strongly convex"

Lemma

Assume $0 < V_{\min} \leqslant V(x) \leqslant V_{\max}$ for all $x \in \Omega$

$$\frac{2}{\max(1, V_{\max})} \big(\mathcal{E}(u) - \mathcal{E}(u^*) \big) \leqslant \|u - u^*\|_{H^1(\Omega)}^2 \leqslant \frac{2}{\max(1, V_{\min})} \big(\mathcal{E}(u) - \mathcal{E}(u^*) \big)$$

Can we have a $\frac{1}{n}$ fast rate generalization bound?

Local Rademacher Complexity

Local Rademacher Complexity

The generalization bound: fix point solution of $\psi(r) = r$

Local Rademacher Complexity

Local Rademacher Complexity

The generalization bound: fix point solution of $\psi(r) = r$

For PINN, Yes!. For DRM, No!

U	Lower Bound		
Objective Function	Neural Network	Fourier Basis	Lower Doulid
Deep Ritz	$n^{-\frac{2s-2}{d+2s-2}}\log n$	$n^{-\frac{2s-2}{d+2s-2}}$	$n^{-\frac{2s-2}{d+2s-4}}$
PINN	$n^{-\frac{2s-4}{d+2s-4}}\log n$	$n^{-\frac{2s-4}{d+2s-4}}$	$n^{-\frac{2s-4}{d+2s-4}}$

Table: Upper bounds and lower bounds Fast Rate achieved.

Solving a simple PDE $\Delta u = f$ using Fourier Basis.

Estimator

First Estimate f then solve u, $f_z = \frac{1}{n} \sum f(x_i) \phi_z(x_i)$, then $u = \sum \frac{1}{\|z\|^2} f_z \phi_z(x)$

Estimator 2

Plug $u = \sum u_z \phi_z(x)$ into the Deep Ritz Objective function

$$\frac{1}{n}\sum_{i=1}^{n}\left(\sum_{z}u_{z}\nabla\varphi_{z}(x_{i})\right)^{2}+\sum_{z}u_{z}\varphi_{z}(x_{i})f(x_{i})$$

Solving a simple PDE $\Delta u = f$ using Fourier Basis.

Estimator 1

First Estimate f then solve u, $f_z = \frac{1}{n} \sum f(x_i) \phi_z(x_i)$, then $u = \sum \frac{1}{\|z\|^2} f_z \phi_z(x)$

Estimator 2

Plug $u = \sum u_z \phi_z(x)$ into the Deep Ritz Objective function

$$\frac{1}{n}\sum_{i=1}^{n}\left(\sum_{z}u_{z}\nabla\varphi_{z}(x_{i})\right)^{2}+\sum_{z}u_{z}\varphi_{z}(x_{i})f(x_{i})$$

Solving a simple PDE $\Delta u = f$ using Fourier Basis.

Estimator 1

First Estimate f then solve u, $f_z = \frac{1}{n} \sum f(x_i) \phi_z(x_i)$, then $u = \sum \frac{1}{\|z\|^2} f_z \phi_z(x)$

Estimator 2

Plug $u = \sum u_z \phi_z(x)$ into the Deep Ritz Objective function

$$\frac{1}{n}\sum_{i=1}^{n}\left(\sum_{z}u_{z}\nabla\varphi_{z}(x_{i})\right)^{2}+\sum_{z}u_{z}\varphi_{z}(x_{i})f(x_{i})$$

Consider estimating in H_{-1} norm using Fourier Basis up to Z, *i.e.* $\mathcal{Z} := \{z \in \mathbb{N}^d | ||z||_{\infty} \leq Z\}$. • Bias:

$$\|\sum_{\|z\|_{\infty}>Z} f_{z} \phi_{z}\|_{H^{-1}}^{2} \leq C \sum_{\|z\|_{\infty}>Z} f_{z}^{2} z^{-2} \leq \|z\|^{-2(s-1)} \|f\|_{H_{\alpha-2}}^{2}$$

Variance:

$$\mathbb{E} \|f - f\|_{H_{-1}}^2 \leq \mathbb{E} \sum_{\|z\|_{\infty} \leq Z} (f_z - f_z)^2 \|\phi_z\|_{H_{-1}}^2 \leq \sum_{\|z\|_{\infty} \leq Z} |z|^{-1} \mathsf{Var}(f_z)$$

Final bound: $Z^{-2(s-1)} + \frac{Z^{d-2}}{n}$

Difference Between Estimator1 and 2

Estimator 1: The Fourier coefficient of the solution of Estimator 1 is

$$\mathbf{u}_{1,z} = \text{diag} \left(\|z\|_2^2 \right)_{\|z\|_{\infty} \leqslant Z}^{-1} f_z.$$
 (2)

Estimator 2: The Fourier coefficient of the solution of Estimator 2 is

$$\mathbf{u}_{2,z} = \underbrace{\left(\frac{1}{n}\sum_{i=1}^{n}\nabla\phi_{i}(x_{i})\nabla\phi_{j}(x_{i})\right)^{-1}_{\|i\|_{\infty}\leqslant Z,\|j\|_{\infty}\leqslant Z}}_{\text{empirical Gram Matrix }A} f_{z}, \quad (3)$$

Thus
$$||u_1 - u_2||_{H_1}^2 \propto ||((\mathbb{E}A) - A)||_{H}^2 \propto \frac{Z^d}{n}$$
.

Difference Between Estimator1 and 2

Estimator 1: The Fourier coefficient of the solution of Estimator 1 is

$$\mathbf{u}_{1,z} = \text{diag} \left(\|z\|_2^2 \right)_{\|z\|_{\infty} \leqslant Z}^{-1} f_z.$$
 (2)

Estimator 2: The Fourier coefficient of the solution of Estimator 2 is

$$\mathbf{u}_{2,z} = \underbrace{\left(\frac{1}{n}\sum_{i=1}^{n}\nabla\phi_{i}(x_{i})\nabla\phi_{j}(x_{i})\right)^{-1}_{\|i\|_{\infty}\leqslant Z,\|j\|_{\infty}\leqslant Z}}_{\text{empirical Gram Matrix }A} f_{z}, \quad (3)$$

Thus
$$||u_1 - u_2||_{H_1}^2 \propto ||((\mathbb{E}A) - A)||_{H}^2 \propto \frac{Z^d}{n}$$
.

How Much Gradient We Need? We Introduce the Modified DRM $\mathcal{E}_{N,n}^{\mathsf{MDRM}}(u) = \frac{1}{N} \sum_{i=1}^{N} \left[|\Omega| \cdot \frac{1}{2} \|\nabla u(X_j')\|^2 \right]$ (4)Sample More Gradients $+\frac{1}{n}\sum_{i=1}^{n}\left[|\Omega|\cdot\left(\frac{1}{2}V(X_j)|u(X_j)|^2-f_ju(X_j)\right)\right]$ Thus Variance: $\frac{\xi^d}{N} < \frac{\xi^{d-2}}{n} \simeq \xi^{-2(s-1)} \Rightarrow \xi \simeq n^{\frac{1}{d+2s-4}}$ and $\frac{N}{-} = \xi^2 = n^{\frac{2}{d+2s-4}}$

Statistical Numerical PDE

25 / 55

Experiment

	(a) Deep Ritz Methods	(b) Modified Deep Ritz Methods	
Theory	$\frac{2s-2}{d+2s-2} = 0.75$	$\frac{2s-2}{d+2s-4} = 1$	
Empirical	0.6595	0.7953	
R2 Score	0.91	0.89	

Up	Lower Bound		
Objective Function	Neural Network	Fourier Basis	Lower Dound
Deep Ritz	$n^{-\frac{2s-2}{d+2s-2}}\log n$	$n^{-\frac{2s-2}{d+2s-2}}$	$n^{-\frac{2s-2}{d+2s-4}}$
Modified Deep Ritz	$n^{-\frac{2s-2}{d+2s-2}}\log n$	$n^{-\frac{2s-2}{d+2s-4}}$	$n^{-\frac{2s-2}{d+2s-4}}$
PINN	$n^{-\frac{2s-4}{d+2s-4}}\log n$	$n^{-\frac{2s-4}{d+2s-4}}$	$n^{-\frac{2s-4}{d+2s-4}}$

Table: Upper bounds and lower bounds we achieve in this paper and previous work. The upper bound colored in red indicates that the convergence rate matches the min-max lower bound.

minimizing
$$\int (\Delta u)^2$$
 is crazy to me
due to the condition number of $\Delta^{\top} \Delta$
Lexing

minimizing
$$\int (\Delta u)^2$$
 is crazy to me
due to the condition number of $\Delta^{\top} \Delta$
Lexing

Let's consider $\Delta u = f$ via minimizing $\frac{1}{2} \langle f, A_1 f \rangle - \langle u, A_2 f \rangle$

• Deep Ritz Methods. $A_1 = \Delta, A_2 = Id$

• **PINN**.
$$\mathcal{A}_1 = \Delta^2$$
, $\mathcal{A}_2 = \Delta$

We consider parameterize f using kernel regression $f(x) = \langle \theta, K_x \rangle$. Then we apply a stochastic gradient descent and get

$$\theta_{t+1} = \theta_t - \eta(\langle \theta, \mathcal{A}_1 K_{x_i} \rangle K_{x_i} - f_i \mathcal{A}_2 K_{x_i})$$

Let's consider $\Delta u = f$ via minimizing $\frac{1}{2} \langle f, A_1 f \rangle - \langle u, A_2 f \rangle$

• Deep Ritz Methods. $A_1 = \Delta, A_2 = Id$

• **PINN**.
$$\mathcal{A}_1 = \Delta^2$$
, $\mathcal{A}_2 = \Delta$

We consider parameterize f using kernel regression $f(x) = \langle \theta, K_x \rangle$. Then we apply a stochastic gradient descent and get

$$\theta_{t+1} = \theta_t - \eta(\langle \theta, \mathcal{A}_1 K_{x_i} \rangle K_{x_i} - f_i \mathcal{A}_2 K_{x_i})$$

We can formulate the Sobolev Norm as $[H^{\alpha}]$ norm as

$$\|\sum_{i\geqslant 1} a_i \mu_i^{lpha/2} e_i\|_{[H]^{lpha}} := \left(\sum_{i\geqslant 1} a_i^2\right)^2$$

The evaluation Sobolev norm can be different as the training Sobolev norm. We consider convergence rate in <u>H</u>^Y norm.

First Result: Three Regime

First Result: Three Regime

And Andrew

Recall

$$\inf_{H} \sup_{u \in C^{\alpha}(\Omega)} \mathbb{E} \| H(\{X_i, f_i\}_{i=1, \cdots, n}) - u^* \|_{W^2_{\mathbf{s}}} \gtrsim n^{-\frac{2\alpha-2\mathbf{s}}{2\alpha-2\mathbf{t}+d}},$$

and translate it into kernel setting

$$\|f_{\lambda} - f\|_{[H]^{\gamma}}^2 \leq n^{-\frac{(\beta-\gamma)\alpha}{\beta\alpha+2(p-q)+1}}$$

They matches for

We can achieve infomration theortical optimal rate n^{- (β-γ)α}/_{βα+2(p-q)+1} via Bias-Variance Tradeoff. Train Longer, Bias Smaller. Train Longer, Variance Larger.

The convergence time will equal to the optimal selection of λ Iteration Time

$$\lambda = n^{\frac{\alpha + \mathbf{p}}{\beta \alpha + 2(\mathbf{p} - \mathbf{q}) + 1}}$$

- Independent of γ .
- (p-q) is from the equation.
- p the only thing effects!

Recall Iteration time $\lambda = n^{\frac{\alpha+p}{\beta\alpha+2(p-q)+1}}$. To compare <u>DRM</u> and <u>PINN</u>, we should fix p - q and then consider the dependency of iteration time on <u>p</u>.

- Denominator do nothing with p
- Numerator
 - ▶ $p < 0, \alpha > 0$, differential operator helps to balance the condition number of the kernel operator. PINN is faster
 - α + p > 0 means activation function should be smooth for NTK

Recall Iteration time $\lambda = n^{\frac{\alpha+p}{\beta\alpha+2(p-q)+1}}$. To compare <u>DRM</u> and <u>PINN</u>, we should fix p - q and then consider the dependency of iteration time on \overline{p} .

- Denominator do nothing with p
- Numerator
 - p < 0, α > 0, differential operator helps to balance the condition number of the kernel operator. PINN is faster.
 - α + p > 0 means activation function should be smooth for NTK

$$\mathbb{E}_{\mathbb{P}_n(x,y)}\frac{1}{2}\langle u, K_x \otimes \mathcal{A}_1 K_x u \rangle - y \langle u, \mathcal{A}_2 K_x \rangle$$

We considered the dynamic

$$\theta_{t} = \theta_{t-1} + \gamma \frac{1}{n} \sum_{i=1}^{n} \left(y_{i} \mathcal{A}_{2} \mathcal{K}_{x_{i}} - \underbrace{\langle \theta_{t-1}, \mathcal{A}_{1} \mathcal{K}_{x_{i}} \rangle_{\mathcal{H}} \mathcal{K}_{x_{i}}}_{\operatorname{not} \left(\langle \theta_{t-1}, \mathcal{A}_{1} \mathcal{K}_{x_{i}} \rangle_{\mathcal{H}} \mathcal{K}_{x_{i}} + \langle \theta_{t-1}, \mathcal{K}_{x_{i}} \rangle_{\mathcal{H}} \mathcal{A}_{1} \mathcal{K}_{x_{i}} \right) \right)$$

for the variance of integral by parts may dominated.

Linear Opeartor Learning

(Linear) Operator Learning: Mapping from one

Function space to another. Infinite Dimensional

- Examples:
 - Mapping from f to Δf
 - Mapping from boundary condition to PDE solution
 - Mapping from t = 0 to t = 1 for $u_t = \Delta u$
- Related works
 - Fourier Neural Operator Learning
 - Deep Operator Net

Linear Operator Learning: Can we learn a linear mapping from one Sobolev Space to another?

- Input Kernel Hilbert Space
 - Kernel Eigen Decay: p
 - Sobolev-β norm
 - operator norm defined as in Sobolev- β' norm
- Output Kernel Hilbert Space
 - Kernel Eigen Decay: q
 - Sobolev-γ norm
 - operator norm defined as in Sobolev- γ' norm

We first present our lower bound result:

For all algorithm
$$\mathcal{L}$$
, we have

$$\mathbb{E} \left\| \mathcal{L} \left(\{ (u_i, v_i) \}_{i=1}^N \right) - \mathcal{A} \right\|_{\beta', \gamma'}^2 \gtrsim N^{-\min\left\{ \frac{\beta - \beta'}{\max\{\alpha, \beta + \rho\}}, \frac{\gamma - \gamma'}{(\gamma)} \right\}}.$$

Rate Decided by the Hardest Side

Optimal Linear Operator Learning

Yiping Lu

Idea Learn all the basis under the equi-variance line!
which gives smallest bias!
Let's only learn

$$S_{N} = \left\{ (x, y) \in \mathbb{Z}_{+}^{2} \mid x^{\frac{\beta'+p}{p}} y^{\frac{\gamma'}{q}} \leqslant N^{\max\left\{\frac{\beta'+p}{\beta+p}, \frac{\gamma'}{\gamma}\right\}} \text{ and } x \leqslant c_{0} \left(\frac{N}{\log N}\right)^{\frac{p}{\alpha}} \right\}$$

 Learning all the spectral operators under certain variance

$$x^{rac{eta'+p}{p}}y^{rac{\gamma'}{q}} \leqslant N^{\max\left\{rac{eta'+p}{eta+p},rac{\gamma'}{\gamma}
ight\}}$$

- Annual

 Learning all the spectral operators under certain variance

$$x^{rac{eta'+p}{p}}y^{rac{\gamma'}{q}} \leqslant N^{\max\left\{rac{eta'+p}{eta+p},rac{\gamma'}{\gamma}
ight\}}$$

Optimal

 Learning all the spectral operators under certain bias

$$x^{rac{eta-eta'}{p}}y^{rac{\gamma'-\gamma}{q}} \leqslant N^{\max\left\{rac{eta-eta'}{eta+p},rac{\gamma'-\gamma}{\gamma}
ight\}}$$

Also <mark>Optimal</mark>

Statistical Numerical PDE

A Multilevel Algorithm

The Gap between two curves enables a multi-level training algorithm

- ► The first level:
 - use <u>all</u> information to learn smooth part

A Multilevel Algorithm

The Gap between two curves enables a multi-level training algorithm

- The first level:
 - use all information to learn smooth part
- The second level:
 - use less information to learn rougher part

PDE Solving:

- Deep Ritz Method High dimensional problem,
 Smooth problem
- PINN Low dimensional problem, Non-smooth problem
- Linear Operator Learning
 - Bias-Variance "Pareto Optimal" Learning is Optimal
 - Achieved by Multi-level Ensemble

- Non-parametric statistics view of numerical PDE solver
- Gives us new constraints to design objective functions to be statistical/information theoretical optimal
- sparsity of the weight is not a good measurement of the complexity of gradients, we need to find new measure
- GD analysis suggest Sobolev Training
- Min-max optimal rate for linear operator leaning

- Lu Y, Chen H, Lu J, et al. Machine Learning For Elliptic PDEs: Fast Rate Generalization Bound, Neural Scaling Law and Minimax Optimality. ICLR 2021.
- Lu Y, Jose B, et al. Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations, submitted.
- Jin J, Lu Y et al. Minimax Optimial Kernel Operator Learning via Multilevel Training

Thank you for listening! and Questions?

Yiping Lu yplu@stanford.edu.cn https://web.stanford.edu/~yplu/