NeurIPS 2022

HYPRO: A Hybridly Normalized Probabilistic Model for Long-Horizon Prediction of Event Sequence

Siqiao Xue¹, Xiaoming Shi¹, James Y Zhang¹, Hongyuan Mei²

1: Ant Group

2 : Toyota Technological Institute at Chicago

2022.10

Problem

Given an event sequence $x_{[0,T]} = \{(t_0, k_0), (t_1, k_1), ..., (t_n, k_n)\}, t_i \in R, k_i \in \mathbb{N}$

The typical problem: predict next event

Our problem: predict **next multiple events over a long future horizon** [T, T'].

Challenge: Cascading Error and Local Normalization

Whenever you make mistakes, you'll never have a chance to correct it !

Our Key Idea: Using Energy-based Model

Our energy function looks at each entire sequence, so it has a chance to correct any earlier errors!

Model Training: Noise-Contrastive Learning

Model Inference : Normalized Importance Sampling

Looking forward to seeing you at our poster and we can discuss

model details

training details

experimental results

paper can be downloaded from

