Near-Optimal Collaborative Learning in Bandits

Clémence Réda^a · Sattar Vakili^b · Émilie Kaufmann^c

^a Université Paris Cité, Inserm, NeuroDiderot, Paris
^b MediaTek Research, UK
^c CNRS, Univ. Lille, Inria Scool

NeurIPS 2022 - New Orleans

Fixed-Confidence Best Arm Identification (BAI) Problem

Identify with prob. $1 - \delta$ the arm $k^* \in [K]$ with highest expected reward arg $\max_k \mu_k$ by observing as few samples as possible (low sample complexity)

Fixed-Confidence BAI Problem with M populations

For each population m, identify with prob. $1 - \delta$ the arm k_m^{\star} with highest expected reward $\arg \max_k \mu_{k,m}$ with low sample complexity

$$\frac{\text{Reward from } k \text{ in } m}{r_{k,m} = \mu_{k,m} + \varepsilon}$$
$$\varepsilon \sim \mathcal{N}(0,1)$$

 \blacktriangleright **Run independently**M**bandit algorithms on**K**arms**

Oversampling due to ignoring info from similar populations

• Run 1 bandit algorithm on $K \times M$ arms

High communication cost across populations

Exploit info from other populations with little communication \Rightarrow maximize *mixed* (instead of local) rewards¹

Weighted Collaborative Model

 $W = (w_{n,m})_{n,m} \in [0,1]^{M \times M}$ weight matrix on populations Expected *mixed* reward for arm k in population m is

$$\mu'_{k,m} := \sum_{n \in [M]} w_{n,m} \mu_{k,n}$$

For population *m*, identify $k'_m \star s.t. \mu'_{k'_m \star,m} = \arg \max_k \mu'_{k,m}$ with low sample complexity and with little communication

¹ Shi, Shen, and Yang (2021). AISTATS. PMLR, pp. 2917–2925

Lower bound on the expected sample complexity τ

For any δ -correct algorithm \mathfrak{A} where $\delta \leq 0.5$ and $\forall m, w_{m,m} \neq 0$

$$\mathbb{E}_{\mathfrak{A},\mu}[\tau] \ge T_W^{\star}(\mu) \log\left(\frac{1}{2.4\delta}\right)$$

Réda · Vakili · Kaufmann | Near Optimal Collaborative Learning in Bandits

In our paper

- ▶ A phased algorithm based on a relaxation of the lower bound...
- ... with near-optimal sample complexity and low communication cost
- New insights on the regret minimization counterpart of this problem