NEURAL INFORMATION PROCESSING SYSTEMS

Adversarial

Robust RL

Efficiency

Efficient Adversarial Training without Attacking: Worst-Case-Aware Robust Reinforcement Learning

Yongyuan Liang*(<u>cheryllLiang@outlook.com</u>), Yanchao Sun*(<u>ycs@umd.edu</u>) Ruijie Zheng, Furong Huang

Background: RL agents are vulnerable. Why?

Vulnerability from DNN approximator

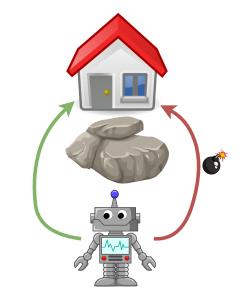
Deep reinforcement learning learns complex policies in large-scale tasks using DNNs. Well-trained DNNs easily fail under adversarial attacks of the input.

=

Intrinsic vulnerability

. . . .

Intrinsic vulnerability of policies comes from the dynamics of the environment. Red policy can be dangerous under adversarial perturbations!!!



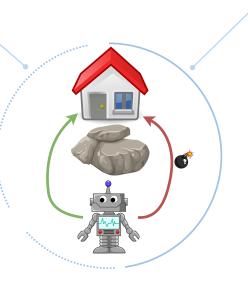
Challenge: Efficiently Enhancing Intrinsic Robustness

Problems: Long-term vulnerability

How to learn RL policies with stronger intrinsic robustness.

Ignoring the worst case may fail

Regularization-based methods[1] neglecting the intrinsic vulnerability, fail under strong attacks.



Prior Solutions

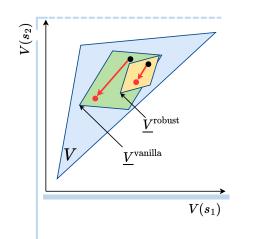
Difficulty: Efficiency

Efficiently robust training without requiring much more effort than vanilla training.

Very expensive robust training

SOTA Alternating Training with Learned Adversaries (ATLA)[2] doubles the computational cost.

Contributions



5,000

Kewards against PA-AD attacks

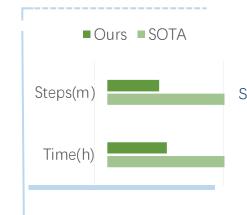
3,000

2,000

1,000

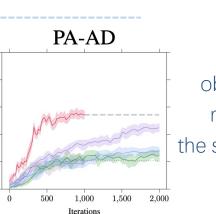
Training Framework: WocaR-RL

Worst-case-aware Robust RL: directly optimizes the worst-case values

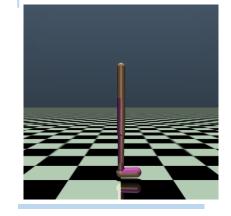


Efficiency

saves about 50% training samples and 50% time



Improve Robustness obtain 20% more rewards under the strongest attacker



Interpretable Behaviors

learns to lower down its body, which is more intuitive and interpretable

Our Methods

Mechanism 1: Worst-attack Value Estimation

Worst-attack Bellman Operator as a contraction:

 $(\underline{\mathcal{T}}^{\pi}Q)(s,a) \coloneqq \mathbb{E}_{S' \sim P(s,a)}[R(s,a) + \gamma min_{a' \in \mathcal{A}_{adv}(s',\pi)}Q(s',a')$

Sestimating worst-attack value by minimizing the estimation loss:

$$\mathcal{L}_{est}\left(\underline{Q}_{\phi}^{\pi}\right) \coloneqq \frac{1}{N} \sum_{t=1}^{N} (\underline{y}_{t} - \underline{Q}_{\phi}^{\pi}(s_{t}, a_{t}))^{2},$$

where $\underline{y}_{t} = r_{t} + \gamma min_{a' \in \mathcal{A}_{adv}(s_{t+1}, a')} \underline{Q}_{\phi}^{\pi}(s_{t+1}, a')$

 \mathcal{A}_{adv} denotes the set of actions an adversary can mislead the victim π into selecting by perturbing the state s_{t+1} into a neighboring state \tilde{s}_{t+1} .

Our Methods

Mechanism 2: Worst-case-aware Policy Optimization

Inimizing the worst-attack policy loss below:

$$\mathcal{L}_{wst}\left(\pi_{\theta};\underline{Q}_{\phi}^{\pi}\right) \coloneqq -\frac{1}{N} \sum_{t=1}^{N} \sum_{a \in \mathcal{A}} \pi_{\theta}(a|s_{t}) \underline{Q}_{\phi}^{\pi}(s_{t},a),$$

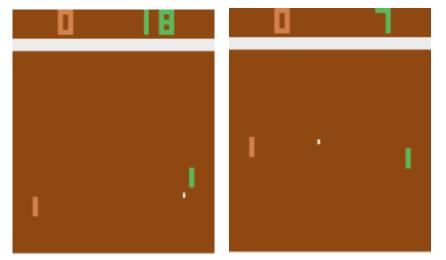
where $\underline{Q}^{\pi}_{\phi}$ is the worst attack critic learn via \mathcal{L}_{est}

 \mathbb{P} We illustrate how to implement \mathcal{L}_{wst} for PPO and DQN

Our Methods

Mechanism 3: Value-enhanced State Regularization

Characterize state importance $s \in S$ $w(s) = max_{a_1 \in A}Q^{\pi}(s, a_1) - min_{a_2 \in A}Q^{\pi}(s, a_2)$

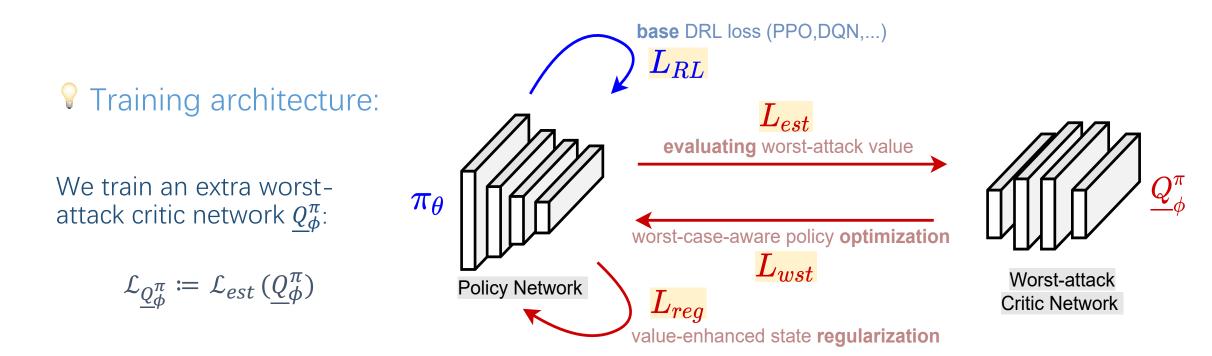


(left) high weight *w*(*s*) and (right) low weight *w*(*s*)

♥ By incorporating the state importance weight, regularize the policy network loss:

$$\mathcal{L}_{reg}(\pi_{\theta}) \coloneqq \frac{1}{N} \sum_{t=1}^{N} w(s_t) \max_{\widetilde{s_t} \in \mathcal{B}_{\epsilon}(s_t)} Dist(\pi_{\theta}(s_t), \pi_{\theta}(\widetilde{s_t})),$$

WocaR: Generic Training Framework

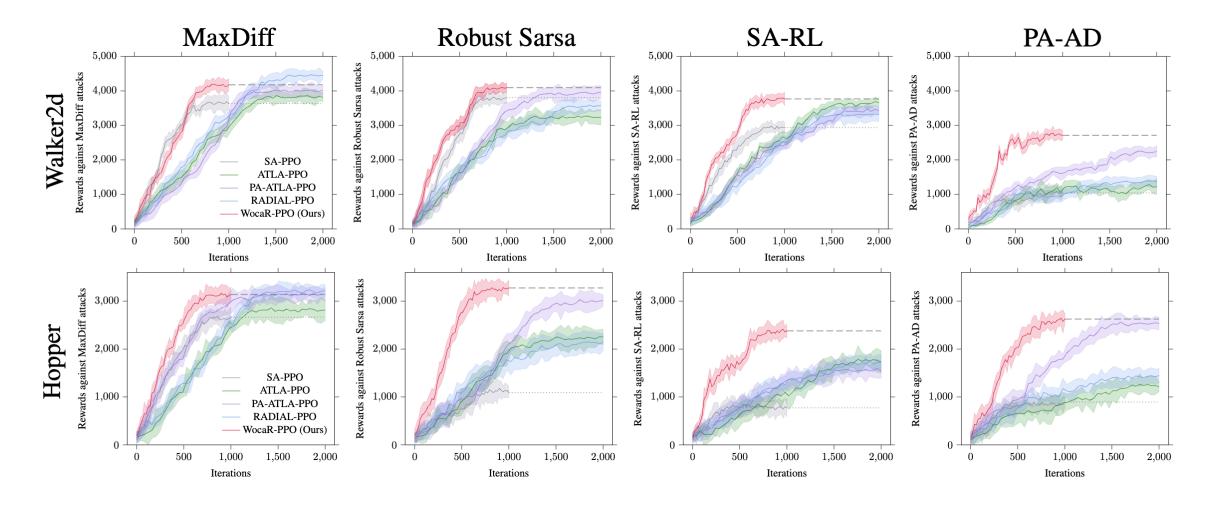


 \mathbb{P} Optimize the policy network π_{θ} by minimizing the combined loss:

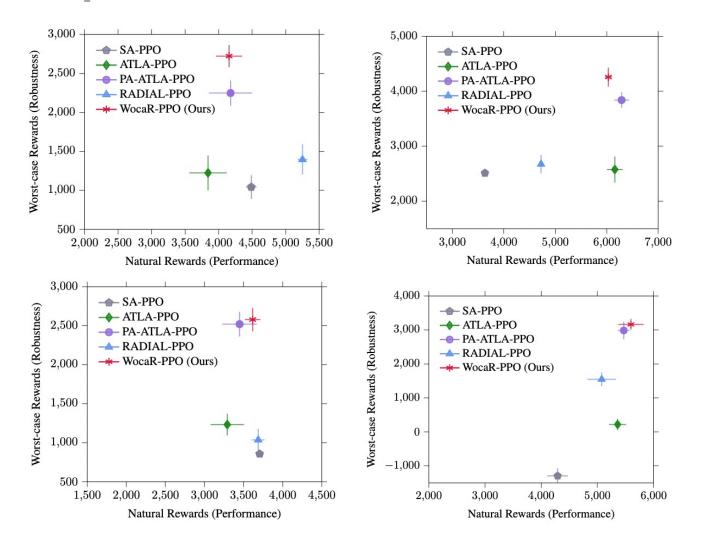
$$\mathcal{L}_{\pi_{\theta}} \coloneqq \mathcal{L}_{RL} + \kappa_{wst} \ \mathcal{L}_{wst} + \kappa_{reg} \mathcal{L}_{reg}$$

Experiments Sta

State-of-the-art Robustness of WocaR-PPO



Experiments Natural performance v.s. Robustness



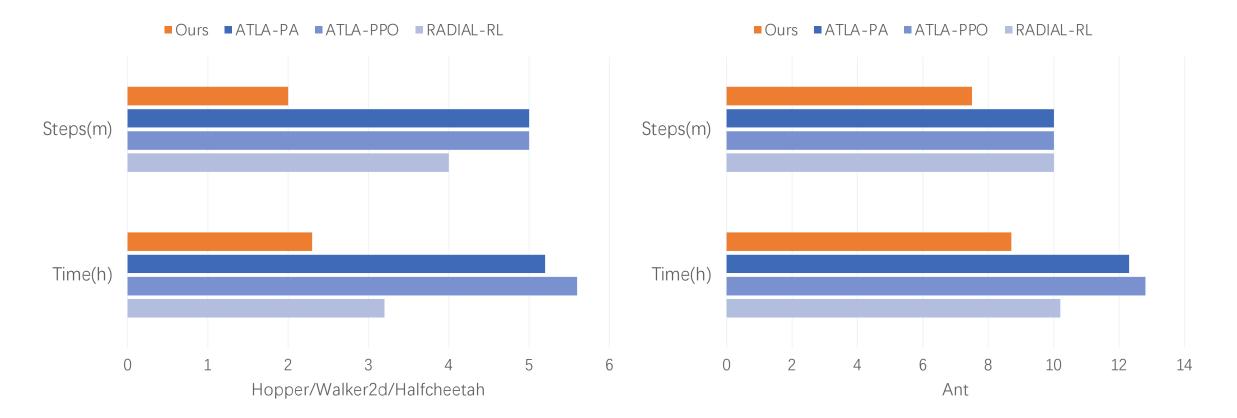
WocaR-RL maintains competitive natural rewards under no attack,

which successfully gains more robustness without losing too much natural performance.

Experiments State-of-the-art Robustness of WocaR-DQN

Model	BankHeist ($\epsilon = 3/255$)				RoadRunner ($\epsilon = 3/255$)			
	Clean	PGD	MinBest	PA-AD	Clean	PGD	MinBest	PA-AD
DQN	1308	0	119	102	45527	0	2985	203
SA-DQN	1245	1176	1024	489	44638	20678	4214	5516
RADIAL-DQN	1178	1176	928	508	44675	38576	8476	1290
Ours	1220	1214	1045	754	44156	38720	10545	8239

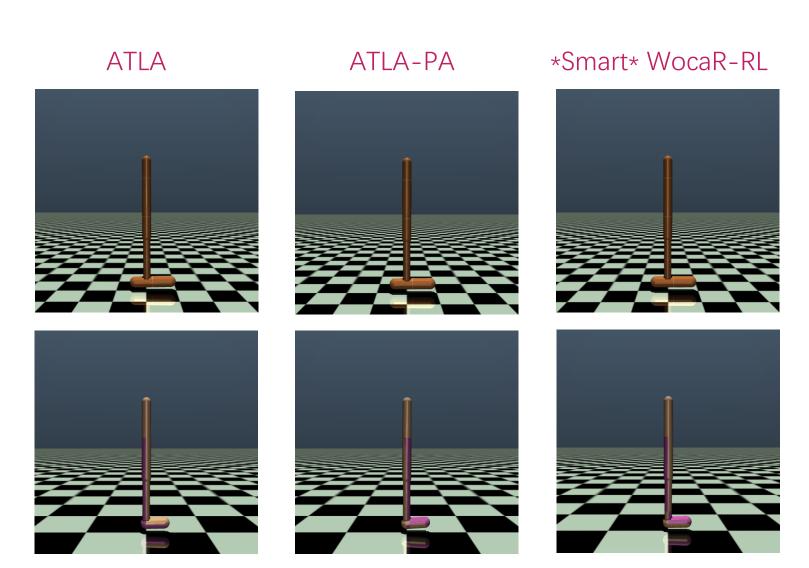
Experiments Significant training efficiency of WocaR-PPO



Sampling: requires only 50% or 75% steps for reliably convergence Time: achieves 1.5 or 2× faster training

Experiments

WocaR-RL learns more interpretable behaviors than SOTA robust methods



THANK YOU FOR WATCH

