Active Learning of Classifiers with Label and Seed Queries

Marco Bressan, Nicolò Cesa-Bianchi, Silvio Lattanzi, Andrea Paudice, Maximilian Thiessen

October 21, 2022

Problem Definition

Learn a k-clustering $\mathcal{C} = (C_1, \ldots, C_k)$ of a finite set $X \subset \mathbb{R}^m$ with the help of a label oracle

Goal 1: query efficiency, i.e., $\mathcal{O}(\log n)$ where n = |X|

Goal 2: computational efficiency, i.e., poly(n + m) time

Problem Definition

passive learning: poly $\frac{1}{\epsilon}$ labeled samples

active learning: $\log \frac{1}{\epsilon}$ queries (goal)

Ω

We consider *convex* clusters in \mathbb{R}^m . In general, one still needs $\Omega(n)$ queries.

 \mathbb{R} : $\mathcal{O}(\log n)$ queries via binary search

 \mathbb{R}^m ?

Convex Hull Margin

A clustering $C = (C_1, ..., C_k)$ of X has (strong) convex hull margin $\gamma > 0$ if for every i = 1, ..., k there is a **pseudometric** d_i^1 s.t. for all $j \neq i$

 $d_i(\operatorname{conv}(C_i),\operatorname{conv}(C_j)) > \gamma \cdot \phi_{d_i}(C_i)$

Convex Hull Margin

A clustering $C = (C_1, ..., C_k)$ of X has (strong) convex hull margin $\gamma > 0$ if for every i = 1, ..., k there is a **pseudometric** d_i^1 s.t. for all $j \neq i$

 $d_i(\operatorname{conv}(C_i), \operatorname{conv}(C_j)) > \gamma \cdot \phi_{d_i}(C_i)$

Every cluster has its own "personalised" idea of distance d_i (unknown to the algorithm!) Allows for SVM margin, norms induced by PSD matrices, projections on subspaces, ...

 $^{^1 \}mathrm{induced}$ by a seminorm

Theorem [BCLP'21]. *k*-clusterings with (strong) convex hull margin γ are learnable in time poly(n + m) using a number of label queries that w.h.p. is in

$$\operatorname{poly}(k, m, 1/\gamma) \left(1 + \frac{1}{\gamma}\right)^m \cdot \log n$$

Moreover $\Omega((1+\frac{1}{\gamma})^{\frac{m-1}{2}})$ label queries are needed in the worst case.

Can we avoid the curse of dimensionality using more powerful queries?

Seed Queries

We consider a query seed that tells whether a subset $U \subseteq X$ intersects the *i*-th cluster.

Hey oracle, any point from cluster 3 here?

We consider a query seed that tells whether a subset $U \subseteq X$ intersects the *i*-th cluster.

Hey oracle, any point from cluster 3 here?

Using just seed queries, we can simulate the Halving algorithm to e.g., learn 2-clusterings with convex hull margin with $O(m \log n)$ queries.

However, not clear if this is possible in time poly(n + m).

Theorem. k-clusterings with (strong) convex hull margin γ are learnable in time f(k) poly(n+m) using in expectation $f(k) m^2 \log n$ label queries and $f(k) m \log \frac{m}{\gamma}$ seed queries.

Two phases:

Rounding the Clusters

Definition. An α -rounding of X (w.r.t. C) is a k-tuple $((X_i, E_i))_{i \in [k]}$ where

- $(X_i)_{i \in [k]}$ is a partition of X
- each E_i is an ellipsoid such that $X_i \subseteq E_i \subseteq \alpha \operatorname{conv}(C_i)$

Rounding the Clusters

Definition. An α -rounding of X (w.r.t. C) is a k-tuple $((X_i, E_i))_{i \in [k]}$ where

- $(X_i)_{i \in [k]}$ is a partition of X
- each E_i is an ellipsoid such that $X_i \subseteq E_i \subseteq \alpha \operatorname{conv}(C_i)$

Lemma. Let p_i be the PSD metric of E_i . Then $p_i(\operatorname{conv}(X_i \cap C_i), \operatorname{conv}(X_i \cap C_j)) \geq \frac{\gamma}{\alpha}$.

Rounding the Clusters

Definition. An α -rounding of X (w.r.t. C) is a k-tuple $((X_i, E_i))_{i \in [k]}$ where

- (X_i)_{i∈[k]} is a partition of X
- each E_i is an ellipsoid such that $X_i \subseteq E_i \subseteq \alpha \operatorname{conv}(C_i)$

Lemma. Let p_i be the PSD metric of E_i . Then $p_i(\operatorname{conv}(X_i \cap C_i), \operatorname{conv}(X_i \cap C_j)) \geq \frac{\gamma}{\alpha}$.

Lemma. An α -rounding of X with $\alpha = \mathcal{O}(m^3)$ can be computed in poly(n + m) time and $\mathcal{O}(m^2 \log n)$ label queries.

Cutting the Version Space

Initialize the version space to $V = B^m(0, 1)$.

Compute the center of mass μ of the version space V.

Check if the halfspace corresponding to μ is correct on X_i using two seed queries.

If not, we can cut V by at least $\left(1-1/e\right)$ by Grünbaum's theorem.

Lemma: this algorithm terminates in $\mathcal{O}(\log \frac{m}{\gamma})$ rounds (and queries).

Polynomial runtime in expectation through carefully approximating μ using hit-and-run

Can force *m* independent binary searches to learn C resulting in $\Omega(km \log \frac{1}{\gamma})$ lower bound.

What can we do with a **noisy** oracle?

Can we make this **parallel**, **distributed**, ...?

Thanks!