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Masked Image Modeling

[1] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

Masked Autoencoders (MAE) [1]

“What I cannot create, I do not understand.”  — Richard Feynman



Motivation of MLR

• Does mask-based modeling work in RL?
• How should we adopt the idea?
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Masked “Video” Modeling



Overall Framework

MLR Auxiliary Loss
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Architecture of Predictive Latent Decoder
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Experiment

• Atari-100k
• DMControl-100k, DMControl-500k



Experiment
Table 1: Comparison on the Atari-100k benchmark. Our method augments Baseline with the 
MLR objective and achieves a 47.9% relative improvement on IQM.



Experiment

Figure 1: Comparison on the Atari-100k benchmark.



Experiment
Table 2: Comparison results (mean ± std) on the DMControl-100k and DMControl-500k 
benchmarks. Our method augments Baseline with the proposed MLR objective.



Experiment

Figure 2: Comparison results on the DMControl benchmarks.



Thanks for Watching!
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