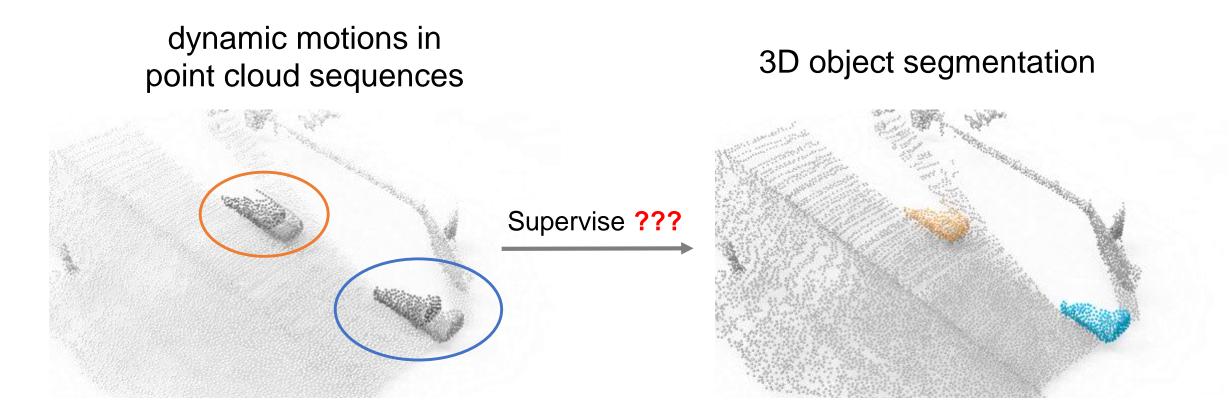


OGC: Unsupervised 3D Object Segmentation from Rigid Dynamics of Point Clouds

Ziyang Song, Bo Yang

vLAR Group, The Hong Kong Polytechnic University

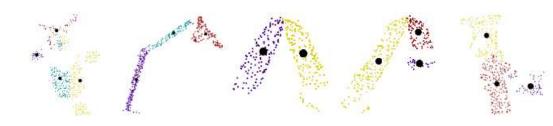
Our task: 3D object segmentation from point clouds

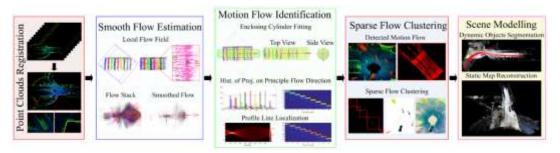


Fully-supervised methods:

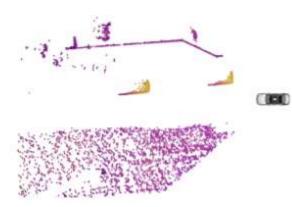
- Costly human annotations
- Limited generalization

 \rightarrow Our goal: Unsupervised 3D object segmentation


Gestalt theory: The raw sensory data with similar motion are likely to be organized into a single object ^[1]

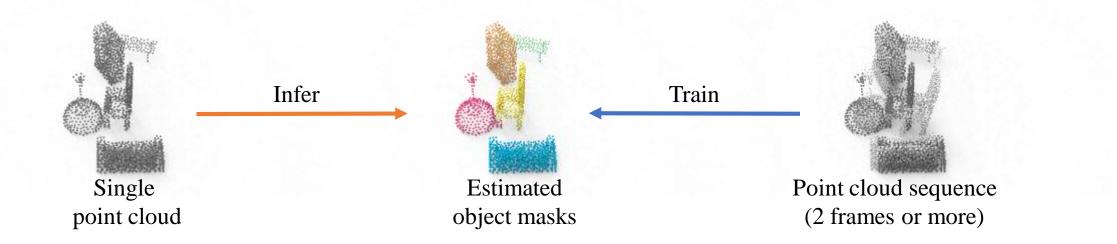

[1] J. Wagemans, J. H. Elder, M. Kubovy, et al. A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. Psychological Bulletin, 138(6):1172–1217, 2012.

Prior works & Limitations


Subspace Clustering (BMVC'18)^[1]

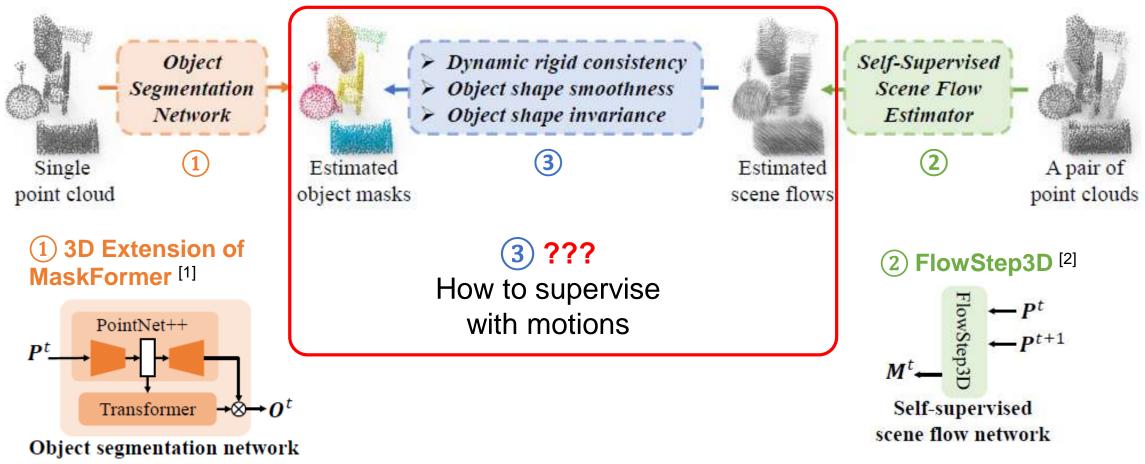
3D-MOD (TITS'21)^[2]

SLIM (ICCV'21) [3]


Limitations:

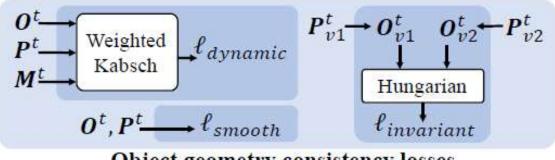
- 1) Only for specific scenarios
- 2 Binary segmentation
- 3 Needing multiple frames in inference

U. M. Nunes and Y. Demiris. 3D motion segmentation of articulated rigid bodies based on RGB-D data. BMVC, 2018.
 C. Jiang, D. P. Paudel, D. Fofi, et al. Moving Object Detection by 3D Flow Field Analysis. TITS, 22(4):1950–1963, 2021.
 S. A. Baur, D. J. Emmerichs, F. Moosmann, et al. SLIM: Self-Supervised LiDAR Scene Flow and Motion Segmentation. ICCV, 2021.


Our goal:

- A general framework
- <u>Multi</u>-object segmentation
- Learning from <u>unlabeled</u> sequences
- Inferring on <u>single</u> point clouds

OGC


OGC (Object Geometry Consistency)

[1] B. Cheng, A. G. Schwing, and A. Kirillov. Per-Pixel Classification is Not All You Need for Semantic Segmentation. NeurIPS, 2021.
[2] Y. Kittenplon, Y. C. Eldar, and D. Raviv. FlowStep3D: Model Unrolling for Self-Supervised Scene Flow Estimation. CVPR, 2021.

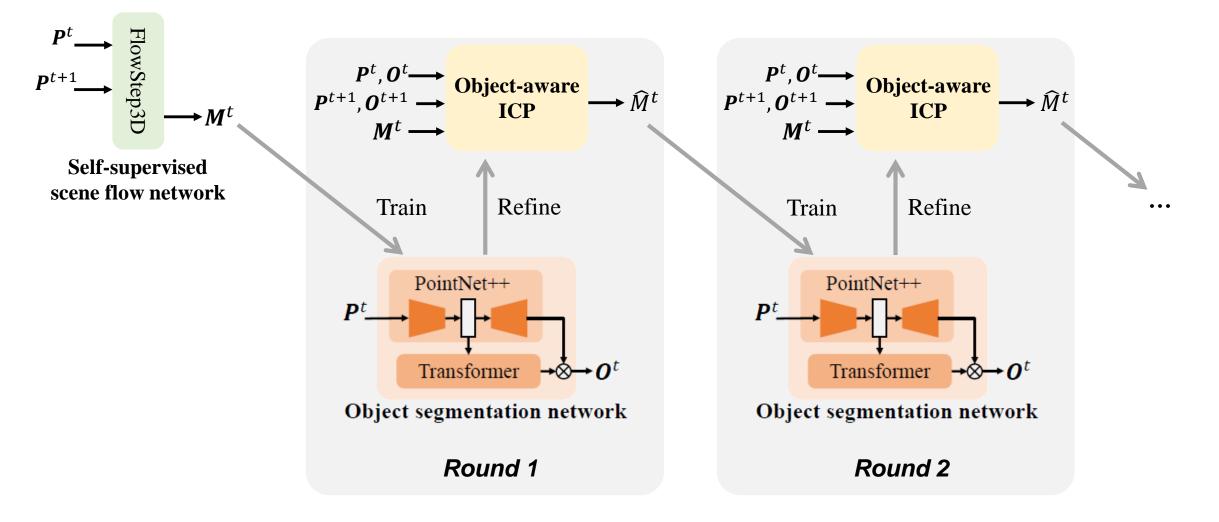
OGC (Object Geometry Consistency) Losses

Object geometry consistency losses

1 **Dynamic rigid consistency:** Motions within each object are rigid

$$\ell_{dynamic} = \frac{1}{N} \left\| \left(\sum_{k=1}^{K} \boldsymbol{o}_{k}^{t} * (\boldsymbol{T}_{k} \circ \boldsymbol{p}^{t}) \right) - (\boldsymbol{p}^{t} + \boldsymbol{m}^{t}) \right\|_{2}$$

2 Smoothness regularization:Objects are spatially continual


$$\ell_{smooth} = \frac{1}{N} \sum_{n=1}^{N} \left(\frac{1}{H} \sum_{h=1}^{H} d(\boldsymbol{o}_{p_n}, \boldsymbol{o}_{p_n^h}) \right)$$

(3) Invariance to spatial transformations: Generalize to static objects

$$\ell_{invariant} = \frac{1}{N} \sum_{n=1}^{N} \hat{d}(\hat{o}_{v1}^{n}, \hat{o}_{v2}^{n})$$

OGC

Iterative optimization of object segmentation and motion estimation

Part instance segmentation on (articulated) objects: SAPIEN dataset

		AP↑	PQ↑	F1↑	Pre↑	Rec [†]	mIoU↑	RI↑
	PointNet++ [57]	88 70		8877	6 7 71		51.2	65.0
Cupanyigad	MeteorNet [43]	-	-	-	-	-	45.7	60.0
Supervised Methods	DeepPart [80]	-	-	-	-	-	53.0	67.0
	MBS [27]	-	-	-	-	-	67.3	77.0
	OGC_{sup}	66.1	48.7	62.0	54.6	71.7	66.8	77.1
Unsupervised	TrajAffn [52]	6.2	14.7	22.0	16.3	34.0	45.7	60.1
Motion Segmentation	SSC [51]	9.5	20.4	28.2	20.9	43.5	50.6	65.9
Ungunamicad	WardLinkage [30]	17.4	26.8	40.1	36.9	43.9	- 4 <u>9</u> .4	62.2
Unsupervised Methods	DBSCAN [17]	6.3	13.4	20.4	13.9	37.9	34.2	51.4
Methods	OGC(Ours)	55.6	50.6	65.1	65.0	65.2	60.9	73.4

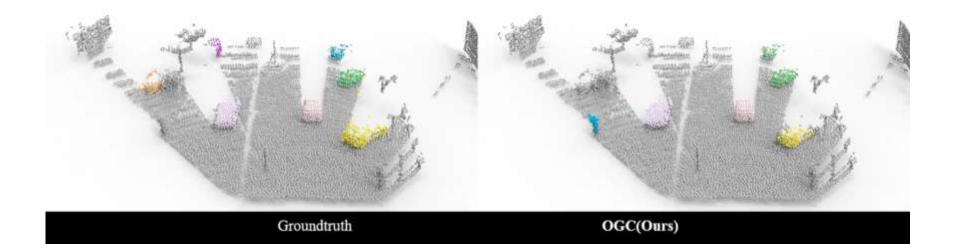
Object segmentation in indoor scenes: OGC-DR / OGC-DRSV datasets

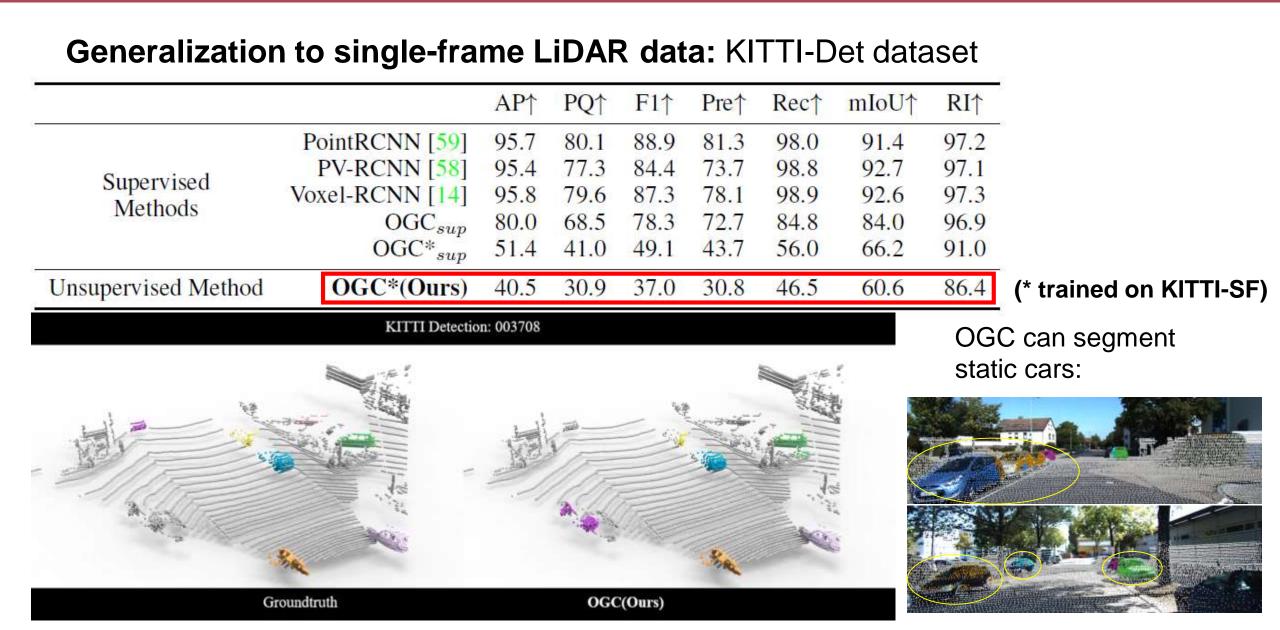

		AP↑	PQ↑	F1↑	Pre↑	Rec↑	mIoU↑	RI↑
Supervised Method	OGC_{sup}	90.7 / 86.3	82.6/78.8	87.6/85.0	83.7 / 82.2	92.0 / 88.0	89.2 / 83.9	97.7 / 97.1
Unsupervised Motion Segmentation	TrajAffn [52] SSC [51]					49.4 / 48.4 77.3 / 74.7		
Unsupervised Methods	WardLinkage [30]	72.3769.8 73.9771.9	74.0771.6	82.5 / 80.5 81.6 / 81.8	93.9 / 91.8 85.8 / 79.1	73.6771.7 77.8/84.8 93.6/91.2	69.9767.2 74.7/80.1	94.3 / 93.3 91.5 / 93.5

Dynamic Room (OGC-DR) Complete point clouds Single-View Dynamic Room (OGC-DRSV)

Incomplete point clouds from single-view depth scans

Dynamic Room: 07_000840, frame 3

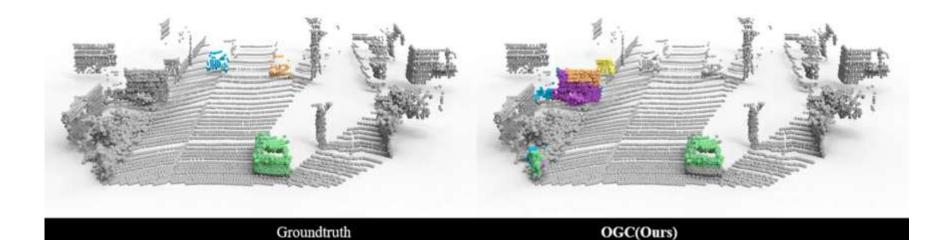

Single-View Dynamic Room: 08_000871, frame 0



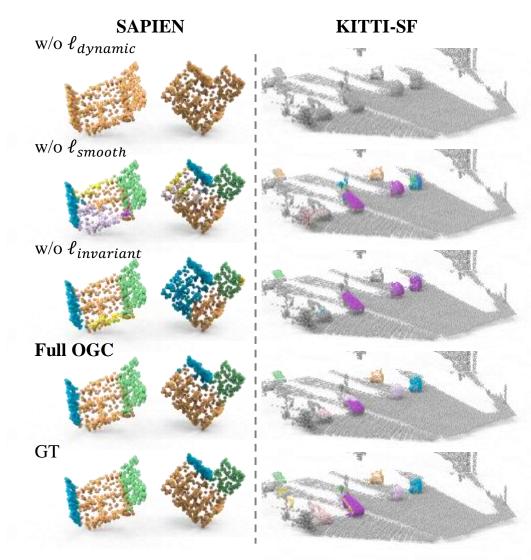
Object segmentation in outdoor scenes: KITTI-SF dataset

		AP↑	PQ↑	F1↑	Pre↑	Rec↑	mIoU↑	RI↑
Supervised Method	OGC_{sup}	62.4	52.7	65.1	63.4	67.0	67.3	95.0
Unsupervised	TrajAffn [52]	24.0	30.2	43.2	37 <mark>.</mark> 6	<u>50.8</u>	4 <mark>8.1</mark>	58.5
Motion Segmentation	SSC [51]	12.5	20.4	28.4	22.8	37.6	41.5	48.9
Unsuparvised	WardLinkage [30]	25.0	16.3	22.9	13.7	69.8	60.5	44.9
Unsupervised	DBSCAN [17]	13.4	22.8	32.6	26.7	42.0	42.6	55.3
Methods	OGC(Ours)	54.4	42.4	52.4	47.3	58.8	63.7	93.6

KITTI Scene Flow: 000123, frame 0



Generalization to large-scale LiDAR data: SemanticKITTI (23201 frames)


Sequences	Methods	AP↑	PQ↑	F1↑	Pre↑	Rec↑	mIoU↑	RI↑
00~10	OGC^*_{sup}	53.8	41.3	48.1	40.1	60.0	68.3	90.0
00~10	OGC*(Ours)	42.6	30.2	35.3	28.2	47.3	60.3	86.0
00~07 &	oup							
09~10	OGC*(Ours)	43.6	30.5	35.5	28.1	48.2	62.1	86.3
08	OGC* _{sup}	49.4	39.2	46.6	$4\bar{0}.\bar{0}$	55.8	60.3	88.3
	OGC*(Ours)	38.6	29.1	34.7	28.6	44.0	51.8	84.3

(* trained on KITTI-SF)

SemanticKITTI: sequence 00

Ablation studies

Our loss design and iterative optimization strategy are validated

\mathbf{m}	IVI	TT	IIC	Rec	moo	IXI
35.4	35.3	54.1	91.1	38.5	28.6	52.7
48.9	46.1	61.3	61.9	60.7	57.9	70.3
	35.4 21.8 48.9	35.4 35.3 21.8 18.5 48.9 46.1	35.4 35.3 54.1 21.8 18.5 26.9 48.9 46.1 61.3	35.4 35.3 54.1 91.1 21.8 18.5 26.9 19.1 48.9 46.1 61.3 61.9	35.4 35.3 54.1 91.1 38.5 21.8 18.5 26.9 19.1 45.4 48.9 46.1 61.3 61.9 60.7	35.4 35.3 54.1 91.1 38.5 28.6 21.8 18.5 26.9 19.1 45.4 52.4 48.9 46.1 61.3 61.9 60.7 57.9 55.6 50.6 65.1 65.0 65.2 60.9

AP[↑] PO[↑] F1[↑] Pre[↑] Rec[↑] mIoU[↑] RI[↑]

Object Segmentation										
#R	AP↑	PQ↑	F1↑	Pre↑	Rec↑	mIoU↑	RI↑			
1	45.9	47.7	62.3	60.2	64.5	60.2	72.3			
2	55.6	50.6	65.1	65.0	65.2	60.9	73.4			
3	56.3	50.7	65.4	65.1	65.8	61.1	73.7			

Conclusion & Future Directions

Our contributions:

- First unsupervised multi-object segmentation
- OGC losses to supervise with motions
- Promising results

Future directions:

- Combination with supervision
- Leveraging multi-frame inputs (if available)

Thanks

paper: https://arxiv.org/abs/2210.04458
code: https://github.com/vLAR-group/OGC
demo: https://www.youtube.com/watch?v=dZBjvKWJ4K0

