

Why neural networks find simple solutions: the many regularizers of geometric complexity

Benoit Dherin dherin@google.com

Michael Munn munn@google.com Mihaela Rosca mihaelacr@deepmind.com

David Barrett barrettdavid@deepmind.com

BENOIT DHERIN dherin@google.com

MICHAEL MUNN munn@google.com

MIHAELA ROSCA DAVID BARRETT mihaelacr@deepmind.com barrettdavid@deepmind.com

Why neural networks find simple solutions: the many regularizers of geometric complexity

Benoit Dherin* Google dherin@google.com Michael Munn* Google munn@google.com Mihaela C. Rosca DeepMind, London mihaelacr@deepmind.com

David G.T. Barrett DeepMind, London barrettdavid@deepmind.com https://arxiv.org/abs/2209.13083

Motivating Example

Trained a ReLU MLP with 3 layers, 300 neurons each

The arc length of the learned function is minimized during training.

From arc length to Geometric Complexity

$$\operatorname{arclength} = \int_{X_D} \sqrt{1 + \|\nabla_x f_\theta(x)\|_F^2} dx \simeq \int_{X_D} 1 + \frac{1}{2} \|\nabla_x f_\theta(x)\|_F^2 dx = \operatorname{Vol}(X_D) + \frac{1}{2} \int_{X_D} \|\nabla_x f_\theta(x)\|_F^2 dx$$

$$\operatorname{Geometric Complexity (GC)} \\ \langle f_\theta, D \rangle_G = \frac{1}{|D|} \sum_{x \in D} \|\nabla_x f_\theta(x)\|_F^2$$
Discrete version of the Dirichlet Energy

GC captures the double-descent phenomenon

GC recovers the classical U-curve when used as the model complexity measure

Well-tuned neural networks find solutions with low geometric complexity

Deeper networks have lower GC at initialization

With deep enough neural networks, the model function is initialized to near the zero function and has lowest possible Geometric Complexity.

Common regularization schemes decrease GC

Well regularized neural networks end up not only to be more performant but also simpler.

LR and batch size tuning decreases GC

IMPLICIT GRADIENT REGULARIZATION

David G.T. Barrett* DeepMind London barrettdavid@google.com **Benoit Dherin*** Google Dublin dherin@google.com

The pressure of implicit gradient regularization transfers to a pressure on the geometric complexity.

For neural networks, SGD encourages simple solutions

Transfer Theorem. Consider a network $f_{\theta} : \mathbb{R}^d \to \mathbb{R}^k$ with ℓ layers parameterized by $\theta = (w_1, b_1, \dots, w_l, b_l)$, then we have the following inequality

For well-tuned neural networks trained to minimal loss, the learned function is implicitly encouraged to find the most geometrically simple solution.

BENOIT DHERIN dherin@google.com

MICHAEL MUNN munn@google.com

MIHAELA ROSCA DAVID BARRETT mihaelacr@deepmind.com barrettdavid@deepmind.com

Why neural networks find simple solutions: the many regularizers of geometric complexity

Benoit Dherin* Google dherin@google.com Michael Munn* Google munn@google.com Mihaela C. Rosca DeepMind, London mihaelacr@deepmind.com

David G.T. Barrett DeepMind, London barrettdavid@deepmind.com

Thanks for listening

https://arxiv.org/abs/2209.13083