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Problem Setup

We consider
min f(w) (P)
where
m f has L-Lipschitz continuous gradient
m A ={weR":|w|o<s}
m f is lower-bounded on Ag

m Known as: feature selection, best subset selection, etc.
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Our approach

m Revisit projected gradient (PG) algorithm
wkt e Tpo(wh) = Pa,(w* — AVF(w")) (PG)

with A € (0,1/L)
m Two acceleration strategies
Acceleration by same-subspace extrapolation

Switching to smooth optimization (Newton) when the right subspace is
identified

J. H. Alcantara and C.-p. Lee  NeurlPS 2022 2



Strategy 1: Acceleration by same-subspace extrapolation

Decompose A as

A = U Ay, Aj=span{e:je€ J},
J€\7$

Jo={JC {12 n}: ] =5},

m lterates are confined on Ag

m If w=1 and w¥ belong to the same A, for some J, we conduct extrapolation
along

Otherwise, skip extrapolation.
m Find suitable t, > 0 and set

2= wk + tyd” (Extrapolation)

wktl e TRq(29). (ProjStep)
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Global convergence

Definition
The KL condition holds at w* if there exists neighborhood U C IR" of w*,
0 €[0,1], and k > 0 such that for every J € Z,,~,

(F(w) — F(w*))? < &[[(VF(wW))sll, YweA,NU. (KL)

r 3

Theorem

(Notation: ny denotes the number of successful extrapolation steps in the first
k iterations.)
Suppose that there is an accumulation point w* of the iterates at which (KL)
holds. Then wk — w*. Moreover, the following rates hold:
(a) If 6 € (1/2,1): f(wk) — f(w*) = O((k + ny)~1/(20-1),
(b) 1f 0 € (0,1/2]: f(w¥) — f(w*) = O(exp(—(k + nk))).
(c) f0=0,0r0€[0,1/2] and f is convex: there is kg > 0 such that
f(wk) = f(w*) for all k > ko.
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Strategy 2: Subspace identification and Smooth
Optimization

Theorem (Subspace identification)
There exists N € N such that

kYoo . *

- . = : .

WiEvelU, A Te={Jedw cA) (x)

whenever w¥ — w*. In particular,

(a) if TPq(w*) is a singleton for an accumulation point w* of {w*}, then w*
is a local minimum, w* — w*, and (%) holds.

(b) (%) holds for Algorithm 1 under the hypotheses of the previous theorem.

m We switch to the truncated Newton method after the subspace A, becomes
fixed for multiple iterations

m This strategy provably leads to superlinear or even quadratic convergence
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Experiments

m Loss functions: Least squares and logistic loss
m Datasets: Used public datasets with #instances < #features
m Stopping criterion

[w = Pa, (w = AVF(w))[| _ .

Residual(w) = A5 [w] £ NIVFW)]) <€ (1)

with € = 1076,
m Compare:
m PG
m APG: Our same-subspace extrapolation acceleration

m APG+: APG plus the smooth Newton part
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m = #instances, n = #features, s =#allowed_nonzeros

Logistic regression
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Accelerated PG for Sparsity Constrained Optimization

Thank you for listening!
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