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Problem Setup

We consider
min
w∈As

f (w) (P)

where

f has L-Lipschitz continuous gradient

As := {w ∈ IRn : ‖w‖0 ≤ s}

f is lower-bounded on As

Known as: feature selection, best subset selection, etc.
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Our approach

Revisit projected gradient (PG) algorithm

wk+1 ∈ Tλ
PG(wk) := PAs (w

k − λ∇f (wk)) (PG)

with λ ∈ (0, 1/L)

Two acceleration strategies

1 Acceleration by same-subspace extrapolation

2 Switching to smooth optimization (Newton) when the right subspace is
identified
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Strategy 1: Acceleration by same-subspace extrapolation

Decompose As as

As =
⋃
J∈Js

AJ , AJ := span{ej : j ∈ J},

Js := {J ⊆ {1, 2, . . . , n} : |J| = s} ,

Iterates are confined on As

If wk−1 and wk belong to the same AJ for some J, we conduct extrapolation
along

dk := wk − wk−1.

Otherwise, skip extrapolation.

Find suitable tk > 0 and set

zk := wk + tkd
k (Extrapolation)

wk+1 ∈ Tλ
PG(zk). (ProjStep)
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Global convergence

Definition

The KL condition holds at w∗ if there exists neighborhood U ⊂ IRn of w∗,
θ ∈ [0, 1], and κ > 0 such that for every J ∈ Iw∗ ,

(f (w)− f (w∗))θ ≤ κ‖(∇f (w))J‖, ∀w ∈ AJ ∩ U. (KL)

Theorem

(Notation: nk denotes the number of successful extrapolation steps in the first
k iterations.)
Suppose that there is an accumulation point w∗ of the iterates at which (KL)
holds. Then wk → w∗. Moreover, the following rates hold:
(a) If θ ∈ (1/2, 1): f (wk)− f (w∗) = O((k + nk)−1/(2θ−1)).
(b) If θ ∈ (0, 1/2]: f (wk)− f (w∗) = O(exp(−(k + nk))).
(c) If θ = 0, or θ ∈ [0, 1/2] and f is convex: there is k0 ≥ 0 such that

f (wk) = f (w∗) for all k ≥ k0.
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Strategy 2: Subspace identification and Smooth
Optimization

Theorem (Subspace identification)

There exists N ∈ N such that

{wk}∞k=N ⊆
⋃

J∈Iw∗
AJ , Iw∗ := {J ∈ Js : w∗ ∈ AJ}. (?)

whenever wk → w∗. In particular,
(a) if Tλ

PG(w∗) is a singleton for an accumulation point w∗ of {wk}, then w∗

is a local minimum, wk → w∗, and (?) holds.
(b) (?) holds for Algorithm 1 under the hypotheses of the previous theorem.

We switch to the truncated Newton method after the subspace AJ becomes
fixed for multiple iterations

This strategy provably leads to superlinear or even quadratic convergence
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Experiments

Loss functions: Least squares and logistic loss

Datasets: Used public datasets with #instances � #features

Stopping criterion

Residual(w) :=
‖w − PAs (w − λ∇f (w))‖
(1 + ‖w‖+ λ‖∇f (w)‖)

< ε̂ (1)

with ε̂ = 10−6.

Compare:

PG

APG: Our same-subspace extrapolation acceleration

APG+: APG plus the smooth Newton part
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m = #instances, n = #features, s =#allowed nonzeros

Logistic regression
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(a) news20, m = 15, 997
n = 1, 355, 191, s = 0.01m
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(b) rcv1.binary,m = 20, 242
n = 47, 236, s = 0.01m
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(c) webspam, m = 280, 000,
n = 16, 609, 143, s = 0.001m

Least square
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(d) E2006-log1p, m = 16, 087
n = 4, 272, 227, s = 0.01m
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(e) E2006-tfidf, m = 16, 087,
n = 150, 360, s = 0.01m
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Thank you for listening!
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