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Sampling over Riemannian Manifolds

Given manifold (M, g), sample from dp(x) = e‘U(x)dvolg(x)
* U(x): M — R is a potential function (e.g. negative-log-posterior)
* dvol,(x) is manifold volume, in coordinates, it is  /det(g).

The Riemannian Langevin Diffusion (RLD):

dx(t) = —grad U(x(t))dt + dB,;g

* grad U denotes the manifold gradient, and dBf denotes the manifold
Brownian motion

e Has invariant distribution e_U(x)dvolg(x)
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Riemannian Langevin MCMC

Based on the geometric Euler Murayama Discretization of RLD:
X(k+1)6 — Expxk(g(—5 grad U(xys) + \/Efk)
where ¢ is “standard Gaussian” wrt an orthonormal basis at T, M

Exponential maps can be approximated to high accuracy
efficiently



RLMCMC can be much faster than Euclidean Langevin MCMC

* Given: unobserved (u = 0,0 = 10), observe samples x; ...x100 ~ N (i, 02).

—l2
* Task: sample from the posterior distribution p(u, o|x; ... X1909) X €xp (Zi e —el” _ Nlog 0)

* Fisher-Rao manifold: (M =R XR*, g(u,o0) = [
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Key Assumptions

* Assume (M, g) satisfies
* Ricci curvature lower bounded by —L ;.
* Absolute value of sectional curvature upper bounded by L,

* Assume —U satisfies
* (gradient Lipschitz) Hess(U)[v,v] < Ly||v||?, forallx € M,v € T,M
» (distant dissipativity) (I grad U(y) — grad U(x), Expx1(y)) = m dist(x, y)?,
for all dist(x,y) > R and somem > —Lp;,.
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Main Theoretical Result

* Assume (M, g) satisfies
* Ricci curvature lower bounded by —L,.;., for some Lp;. > 0
* Absolute value of sectional curvature upper bounded by L,

* Assume —U satisfies
* (gradient Lipschitz) Hess(U)[v,v] < Ly||v||?, forallx € M,v € T,M
* (distant dissipativity) (I‘ggrad U(y) —grad U(x), Expgl(y)> > m dist(x, y)?,
for all dist(x, y) > R and some m > Lp;,

Theorem 1

Let x5 be iterates of RLMCMC, and let y(t) denote RLD, then
E|dist(xgs, y(K8))| < €

for K = poly (e(LU“Tic)RZ,LseC,LU, d — ) - 1/€%
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