Towards Diverse and Faithful One-shot Adaption of Generative Adversarial Networks

Yabo Zhang¹, Mingshuai Yao¹, Yuxiang Wei¹, Zhilong Ji², Jinfeng Bai², Wangmeng Zuo^{1,3} ¹Harbin Institute of Technology ² Tomorrow Advancing Life ³Peng Cheng Laboratory

Introduction

ConSinGAN

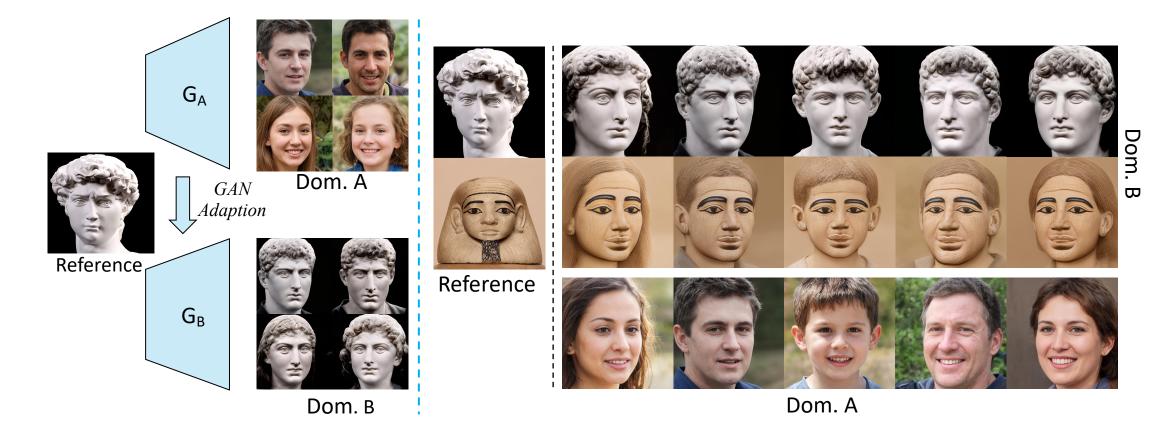
One training image

StyleGAN-ADA

~100 training image

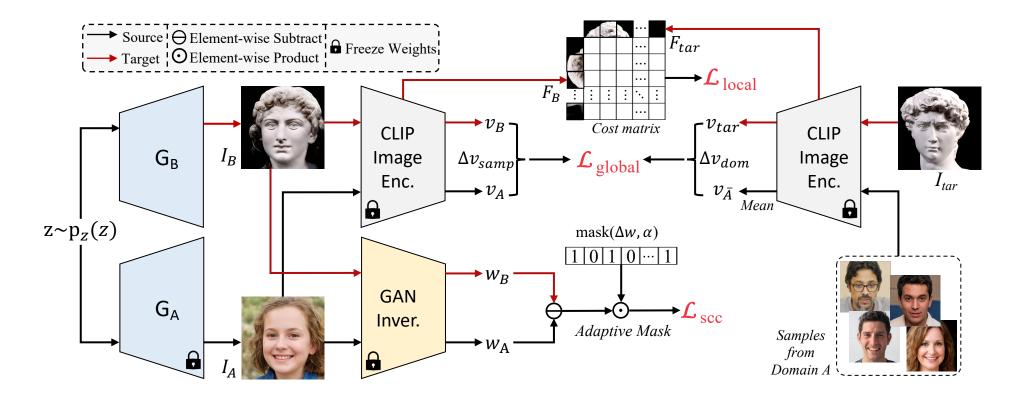
It is difficult to synthesize photo-realistic and highly diverse images when training a generator from the scratch with very limited data.

Introduction



Transfer a pre-trained generator to a new domain so that **inheriting** its ability to producing highly diverse images.

Method



Global-level adaption loss L_{global} and attentive style loss L_{local} encourage G_B to faithfully acquire both global and local representative domain-specific characteristics.
Selective cross-domain consistency loss L_{scc} selects and retains domain-sharing attributes.

Local-level adaption (attentive style loss)

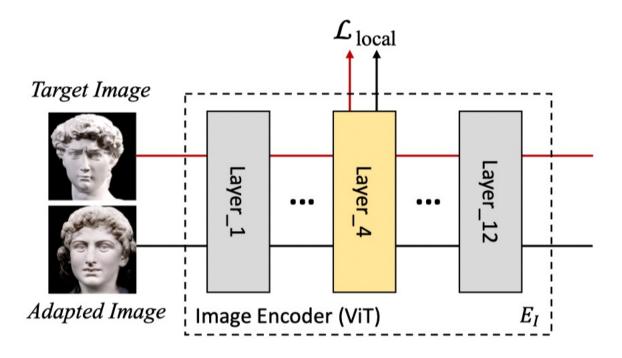
Each part of adapted image attentively captures its corresponding style in target image

Firstly, define the cost matrix C to measure the token-wise distances from F_B to F_{tar}

$$oldsymbol{C}_{i,j} = 1 - rac{oldsymbol{F}_B^i \cdot oldsymbol{F}_{tar}^j}{|oldsymbol{F}_B^i||oldsymbol{F}_{tar}^j|}$$

Then, we compute the attentive style loss as:

$$\mathcal{L}_{local} = \max \Big(rac{1}{n} \sum_i \min_j oldsymbol{C}_{i,j}, rac{1}{m} \sum_j \min_i oldsymbol{C}_{i,j} \Big)$$



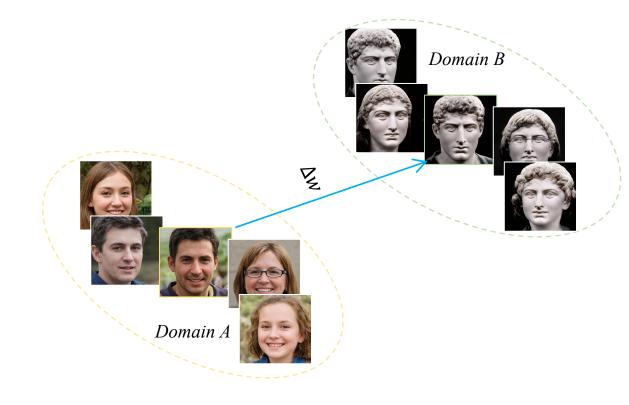
Selective cross-domain consistency loss

The key idea is to identify and retain **domain-sharing attributes** between domain A and B.

$$\mathcal{L}_{scc} = ||\mathsf{mask}(\Delta \boldsymbol{w}, lpha) \cdot (\boldsymbol{w}_B - \boldsymbol{w}_A)||_1$$

To identify them, we use two **queues** to memory pairs of latent codes from domain A and B. Dynamically choose the least-change channels.

$$ext{mask}(\Delta oldsymbol{w}, lpha)_i = egin{cases} 1 & |\Delta oldsymbol{w}_i| < |\Delta oldsymbol{w}_{s_{lpha N}}| \ 0 & |\Delta oldsymbol{w}_i| \ge |\Delta oldsymbol{w}_{s_{lpha N}}| \end{cases}$$



Qualitative results (Intra-category)

(a) Ours

(b) Mind The Gap

(c) StyleGAN-NADA

(d) Few-Shot Adaption

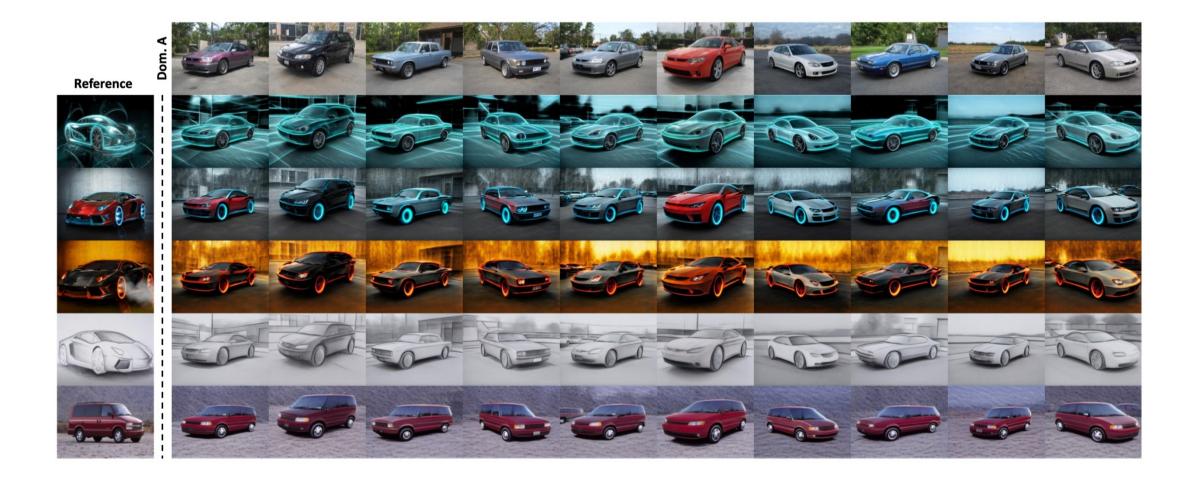
Qualitative results (Inter-category)

(a) Ours

(b) Mind The Gap

(c) StyleGAN-NADA

More qualitative results



More qualitative results

Real Image Editing

Dom. A

Reference

Dom. B

Eyes

Smile

Gender

Pose

Editing a real image in domain B

Extension

"A painting in the style of Edvard Munch" "A sketch with black pencils" Dom. A

Extension to zero-shot generative domain adaption