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Provable Model-Based Reinforcement Learning

Different from greedy algorithms, provable MBRL often leverages
the uncertainty:

— Optimism in the Face of Uncertainty (OFU)

fr
7 = argmax max Vt.
gﬂ' freFr T (1)

— Posterior Sampling RL (or Thompson Sampling)

fp ~ ¢(:|D¢), T = argmax V. (2)

Sublinear regret O(v/dT). Model complexity d capture how
effectively the observed samples can extrapolate to unobserved
transitions.

Theorem 1. (Eluder Dimension of Nonlinear Models [Dong et al.
2021]) The eluder dimension of one-layer ReLU neural networks is
at least Q(e7(9=1)), where d is the state-action dimension.
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Limitations

® Assumption on the restricted model complexity is strong.
Nonlinear model complexity is exponential in dimension.

® Qver-exploration. Intuition: Explore regions with higher
uncertainty and the optimistic/sampled model can be
unrealistic.

® Policy is optimized for uncertainty elimination, not for value
improvement. Each step only eliminates a small portion of
uncertainty.
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Conservative Dual Policy Optimization

Sampling in PSRL is harmful. Can we abandon sampling while still
provably exploring?
Selecting a reference model and optimizing a policy w.r.t. it
resembles the sampling-then-optimization procedure in PSRL,
while offering more stability when the reference is steady.

® Referential Update.

?LS
g: = argmax V¢!
q
® Constrained Conservative Update.

m = arg;naxE[V,f‘ |7—lt], st. E |:DTV(7Tt('|5)7 Qt(‘|5))} <7

S~ Vqp
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Theorem 2. [CDPO Matches PSRL in BayesRegret] Let 7P>Rt be
the policy of any posterior sampling algorithm for reinforcement
learning optimized by (2). If the BayesRegret bound of 7SRt
satisfies that for any T > 0, BayesRegret(T,7"5RL $) < D, then
for all T > 0, we have for the CDPO policy 7¢PPO that
BayesRegret( T, 7PPO ¢) < 3D.
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CDPO satisfies the following properties simultaneously:

® Global optimal with sublinear regret.

® Monotonic policy value improvement.
TNheorem 3. [PoINicy Iterative Improvement] Suppose we have
IIf(-,-)|| < C for f € F where the model class F is finite. Define
L := maxs 5 |AL (s, a)|, where AT is the advantage function defined
as Af"(s,a) := Qf (s,a) — V/"(s). With probability at least 1 — §,
the policy improvement between successive iterations is bounded by

229C2In(|F|/8)  2me

) = Jmer) = B(E) — (14 w) - g

where A(t) 1= Es~c¢ [Vj;(s) - Vj:il(s)] > 0 due to the greediness
of qt.
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Theorem 4.[Expected Regret of CDPO] Let N(F,«, ||-||2) be the
a-covering number of F. Denote de := dimg(F, T~ 1) for the
eluder dimension of F at precision 1/T. Under Lipschitz
assumptions, the cumulative expected regret of CDPO in T
iterations is bounded by

YT(3T —5)L 1
< . -
BayesRegret(T,, ¢) < T-1)(T-2) L+ 1+ 7Ca/E + 4,/ Tde3

+4~C,
where L :=E[L¢] and

B = 802 log (2N (F, 1/(T?), |-]12) T) + 2(8C + /802 10g(8T*) ) /T.
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Tabular Experiments

Tabular N-Chain MDP:

Right actions are optimal, left actions are suboptimal, at each of
the N states.
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Tabular Experiments

Different Exploration Mechanisms in the tabular N-Chain MDPs:
CDPO gives more accurate and certain estimates only for the
optimal right actions, while PSRL explores both directions.
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Figure 1: CDPO and PSRL posterior on an 8-Chain MDP
and a 15-Chain MDP, where the right actions are optimal.

Over-exploration issue in PSRL: as long as the uncertainty contains
unrealistically large values, it can perform uninformative
exploration according to an inaccurate sampled model.
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Tabular Experiments

8-Chain MDP 15-Chain MDP

— CDPO — CDPO
— PSRL — PSRL
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Figure 2: Regret curve of CDPO and
PSRL when N = 8 and N = 15.

Although CDPO has much larger uncertainty for the suboptimal
left actions, its regret is lower.
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Mujoco Experiments

Exploration Efficiency with Nonlinear Model Class:
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Figure 3: Performance of CDPO, PSRL, and HUCRL equipped with nonlinear models in several
MuJoCo tasks: inverted pendulum swing-up, pusher goal-reaching, and half-cheetah locomotion.

In higher dimensional tasks such as half-cheetah, CDPO achieves a
higher asymptotic value with faster convergence.
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Figure 4: Comparison between CDPO and model-free, model-based RL baseline algorithms.

Ablation Study:
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Figure 5: Ablation studies on the effect of the dual update steps and the trust-region constraint. The
robustness and generalizability of the CDPO framework are demonstrated by the results of different
choices of the constraint threshold and different solvers.
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